Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 707-716    DOI: 10.3724/SP.J.1037.2012.00742
Current Issue | Archive | Adv Search |
EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL
LIU Wenbo1), ZHANG Chi1), YANG Zhigang1), XIA Zhixin2), GAO Guhui1), WENG Yuqing3)
1) Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) Suzhou Nuclear Power Research Institute, Suzhou 215004
3) The Chinese Society for Metals, Beijing 100711
Cite this article: 

LIU Wenbo, ZHANG Chi, YANG Zhigang, XIA Zhixin, GAO Guhui, WENG Yuqing. EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL. Acta Metall Sin, 2013, 49(6): 707-716.

Download:  PDF(5836KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocrystalline grains in the surface of reduced activation ferrite/martensite(RAFM) steel were produced by means of surface mechanical attrition treatment (SMAT). Analysis results of XRD and TEM showed that grains after SMAT were nanocrystalline. Experiment results after annealing at 550℃ showed that the nanocrystallines were stable. Abnormal grain growth was observed from the TEM images after tempered for 120 min, and the grain sizes became uniform after tempered for 240 min (about 250 nm). The XRD diffraction peaks of carbides became weaker and boarder indicated that carbides in the surface layer became smaller after SMAT, and smaller MC type carbides were found from HRTEM images after SMAT. The lattice parameters of M23C6 and MC were 1.0631 and 0.4306 nm calculated from the XRD results. The differences of grain sizes obtained by XRD and TEM could be attributed to the different testing mechanism, different measuring depths and the depth-dependent nanocrystalline microstructure, and results obtained by TEM were more accurate to reveal the real grain size.

Key words:  surface nanocrystallization      thermal stability      reduced activation steel,      carbide  decomposition     
Received:  18 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00742     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/707

[1] Lu K, Lu L.  Acta Metall Sin, 2000; 36: 785

 (卢柯, 卢磊. 金属学报, 2000; 36: 785)
[2] Yong X P, Liu G, Lu J, Lu K.  Acta Metall Sin, 2002; 38: 157
 (雍兴平, 刘刚, 吕坚, 卢柯. 金属学报, 2002; 38: 157)
[3] Valiev R Z, Korznikov A V, Mulyukov R R,  Mater Sci Eng, 1993; A168: 141
[4] Lu K, Lu J.  Mater Sci Eng, 2004; A375-377: 38
[5] Lu K, Lu J.  J Mater Sci Technol, 1999; 15: 193
[6] Wang H L, Wang Z B, Lu K.  Acta Mater, 2012; 60: 1762
[7] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K.  Acta Mater, 2002; 50: 4603
[8] Lu S D, Wang Z B, Lu K.  J Mater Sci Technol, 2010; 26: 258
[9] Wang L M, Wang Z B, Lu K.  Acta Mater, 2011; 59: 3710
[10] Li W, Xu W Z, Wang X D, Rong Y H.  J Alloys Compd, 2009; 474: 546
[11] Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J.  Acta Mater, 2003; 51: 5555
[12] Nam W J, Bae C M, Oh S J, Kwon S J.  Scr Mater, 2000; 42: 457
[13] Lanfuillaume J, Kapelski G, Baudelet B.  Acta Mater, 1997; 45: 1201
[14] Gavriljuk V G.  Mater Sci Eng, 2003; A345: 81
[15] Zhou L, Liu G, Ma X L, Lu K.  Acta Mater, 2008; 56: 78
[16] Lojkowski W, Djahanbakhsh M, Burkle G, Gierlotka S, Zielinski W, Fecht H J.  Mater Sci Eng, 2001; A303: 197
[17] Jo T S, Lim J H, Kim Y D.  J Nucl Mater, 2010; 406: 360
[18] Huang Q Y, Yu J N, Wan F R, Li J G, Wu Y C.  Chin J Nucl Eng, 2004; 24: 56
 (黄群英, 郁金南, 万发荣, 李建刚, 吴宜灿. 核科学与工程, 2004; 24: 56)
[19] Jones R H, Heinisch H L, McCarthy K A.  J Nucl Mater, 1999; 271--272: 518
[20] Xia Z X, Zhang C, Yang Z G.  Acta Metall Sin, 2011; 47: 713
(夏志新, 张弛, 杨志刚. 金属学报, 2011; 47: 713)
[21] Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P.  Science, 2010; 327: 1631
[22] Ackland G.  Science, 2010; 327: 1587
[23] Klug H P, Alexander L E.  X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley, 1974: 662
[24] Feng G, Shi L J, Lu J, Lu K.  Acta Metall Sin, 2000; 36: 300
(冯淦, 石连捷, 吕坚, 卢柯. 金属学报, 2000; 36: 300)
[25] Schiotz J, Tolla F D, Jacobsen K W.  Nature, 1998; 391: 561
[26] Jeon J B, Lee B J, Chang Y W.  Scr Mater, 2011; 64: 494
[27] Huang F, Tao N R, Lu K.  J Mater Sci Technol, 2011; 27: 1
[28] Gavriljuk V.  Scr Mater, 2002; 46: 175
[29] Ohsaki S, Hono H, Hidaka H, Takaki S.  Scr Mater, 2005; 52: 271
[30] Sauvage X, Quelennec X, Malandain J J, Pareige P.  Scr Mater, 2006; 54: 1099
[31] Liu W B, Zhang C, Xia Z X, Yang Z G, Wang P H, Chen J M.Mater Sci Eng, 2013; A568: 176
[32] Erdos E.  Analysis of High Temperature Materials. London and New York: Applied Science Publishers, 1983: 204
[33] Franck F J, Tambuyser P, Zubani I.  J Mater Sci, 1982; 17: 3057
[34] Song X Y, Zhang J X, Li L M, Yang K Y, Liu G Q.  Acta Mater, 2006; 54: 5541
[35] Salati A, Panjepour M, Aryanpour G.  J Phys Chem Solids, 2011; 72: 104
[36] Waniewska A S, Greneche J M.  Phys Rev, 1997; 56B: 8491
[37] Meng Q, Zhou N, Rong Y, Chen S, Hsu T Y (Xu Z Y).  Acta Mater, 2002; 50: 4563
[39] Pan J S, Tong J M, Tian M B.  Fundamentals of Materials Science. Beijing: Tsinghua University Press,2004: 579
 (潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 2004: 579)
[38] Krill C E, Helfen L, Michels D, Natter H, Fitch A,  Phys Rev Lett, 2001; 86: 842
[40] Ungar T, Tichy G, Gubicza J, Hellmig R J.  Powder Diffr, 2005; 20: 366
[41] Ungar T, Gubicza J, Ribarik G, Borbely A.  J Appl Crystallogr, 2001; 34: 298
[42] Zhu Y T, Huang J Y, Gubicza J, Ungar T, Wang Y M, Ma E, Valiev R Z.  J Mater Res,2003; 18: 1908
[43] Malow T R, Koch C C.  Acta Mater, 1997; 45: 2177
[1] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[5] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[6] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[7] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints[J]. 金属学报, 2017, 53(7): 842-850.
[9] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[10] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
[11] Gang LIU, Chao LI, Ye MA, Ruijun ZHANG, Yongkai LIU, Yuhui SHA. HEAT STABILITY AND SILICONIZING BEHAVIOR OF SURFACE NANOSTRUCTURE OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING[J]. 金属学报, 2016, 52(3): 307-312.
[12] YANG Bin, LI Xin, LUO Wendong, LI Yuxiang. EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS[J]. 金属学报, 2015, 51(4): 465-472.
[13] LIU Gang, MA Ye, ZHANG Ruijun, WANG Xiaolan, SHA Yuhui, ZUO Liang. SURFACE NANOCRYSTALLIZATION OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING AND EFFECT OF ROLLING PARAMETERS[J]. 金属学报, 2014, 50(9): 1071-1077.
[14] LIU Gang, LIU Jinyang,WANG Xiaolan,WANG Fuhui,ZHAO Xiang,ZUO Liang . FORMATION OF NANOCRYSTALLINES IN THE SURFACE LAYER OF COMMERCIAL PURE TITANIUM THIN SHEET DURING ASYMMETRIC ROLLING[J]. 金属学报, 2013, 49(5): 599-604.
[15] ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan. FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER[J]. 金属学报, 2013, 49(12): 1611-1616.
No Suggested Reading articles found!