Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (12): 1291-1297     DOI:
Research Articles Current Issue | Archive | Adv Search |
Three-dimensional Microstructure Simulation of AZ91D Die Casting Magnesium Alloy
Cite this article: 

. Three-dimensional Microstructure Simulation of AZ91D Die Casting Magnesium Alloy. Acta Metall Sin, 2006, 42(12): 1291-1297 .

Download:  PDF(2123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Abstract: This paper focuses on the AZ91D die casting magnesium alloy which is used widely in engineering world and proposes a set of mathematical and physical models of microstructure evolution in the solidification process. Coupled with 3D solute concentration field calculation model, a modified 3D micro-scale cellular automaton (CA) model has been founded to simulate the microstructure evolution of AZ91D die casting magnesium alloy. For multi-grains growth simultaneously, this model successfully revealed the whole evolution process of solute diffusion among the primary grains, solute enrichment and the eutectic transformation. The improved model was applied to simulate the microstructure of different parts of the actual AZ91D die casting and simulation results are in good agreement with the experimental.
Key words:  Microstructure simulation      Solute concentration field      Magnesium alloy      Die casting      
Received:  31 March 2006     
ZTFLH:  TG244  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I12/1291

[1] Zhang P, Zeng D B. J Spec Cast Non-ferrous Alloys, 2000; 6: 55 (张鹏.曾大本.特种铸造及有色合金, 2000;6:55)
[2] Chen Z H. Magnesium Alloy. Beijing: Chemical Industry Press, 2004: 108 (陈振华.镁合金.北京:化学工业出版社, 2004:108)
[3] Liu B C. Chin J Mech Eng, 2000; 11: 67 (柳百成.中国机械工程, 2000;11:67)
[4] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43
[5] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2003; 34A: 367
[6] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471
[7] Raghavan S, Krane M J M, Johnson D R. Modeling of Casting, Welding and Advanced Solidification Processes- X, Destin: TMS, 2003: 107
[8] Li Q, Li D Z, Qian B N. Acta Matall Sin, 2004; 40: 1215 (李强,李殿中,钱百年.金属学报, 2004;40:1215)
[9] Zhu M F, Dai T, Li C Y, Hong C P. Sci Chin, 2005; 35E: 673 (朱鸣芳,戴挺,李成允,洪俊杓.中国科学, 2005;35E: 673)
[10] Zhu M F, Hong C P. ISIJ Int, 2002; 42: 520
[11] Wang W, Lee P D, McLean M. Acta Mater, 2003; 51: 2971
[12] ASM Handbook Committee. ASM Handbook, Volume 3: Alloy Phase Diagrams. Metals Park, Ohio: ASM International, 1992: 2.48
[13] Hultgren R, Desai P D, Hawkins D T. Selected Values of the Thermodynamic Properties of Binary Alloys Metals Handbook. Metals Park, Ohio: ASM, 1973: 180
[14] Liu Z, Zhang K, Zeng X Q. Theory and Application of Mg-based Light Alloy. Beijing: China Machine Press, 2002: 47 (刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002:47)
[15] Cui Z Q. Metallography and Heat Treatment. Beijing: China Machine Press, 1989: 94 (崔忠圻.金属学与热处理.北京:机械工业出版社,1989:94)
[16] Lu S X, Gu K D, Zheng L S. Non-ferrous Cast Alloy and Melting. Beijing: National Defence Industry Press, 1983: 185 (陆树荪,顾开道,郑来苏.有色铸造合金及熔炼.北京:国防工业出版社, 1983:185)
[17] Zeng R C, Ke W, Xu Y B. Acta Matall Sin, 2001; 37: 673 (曾荣昌,柯伟,徐永波.金属学报, 2001;37:673)
[18] Wang Y S, Zhang Y B, Wang Q D, Ma C J, Ding W J, Zhu Y P. Acta Matall Sin, 2002; 38: 539 (王业双,张咏波,王渠东,马春江,丁文江,朱燕萍.金属学报,2002;38:539)
[19] Xiong S M, Xu Q Y, Kang J W. Modeling and Simulation Technology in Casting Process. Beijing: China Machine Press, 2004: 140 (熊守美,许庆彦,康进武.铸造过程模拟仿真技术.北京:机械工业出版社,2004:140)
[20] Thevoz P H, Desbiolles J L, Rappaz M. Metall Trans, 1989; 20A: 311
[21] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823
[22] Rappaz M, Thevoz P H. Acta Metall, 1987; 35: 1487
[23] Nastac L. Acta Mater, 1999; 47: 4253
[24] Xu Q Y, Liu B C. Chin J Mech Eng, 2001; 12: 328 (许庆彦,柳百成.中国机械工程,2001;12:328)
[25] Feng W M, Xu Q Y, Liu B C. J Tsinghua Univ, 2003; 43: 605 (冯伟明,许庆彦,柳百成.清华大学学报, 2003;43:605)
[26] Xu Q Y, Feng W M, Liu B C. Acta Metall Sin, 2002; 38: 799 (许庆彦,冯伟明,柳百成.金属学报, 2002;38:799)
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[8] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[9] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[10] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[11] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[12] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[13] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[14] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[15] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
No Suggested Reading articles found!