Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (4): 515-528    DOI: 10.11900/0412.1961.2020.00414
Overview Current Issue | Archive | Adv Search |
New Development of Research on Casting of Bulk Amorphous Alloys
LIU Riping(), MA Mingzhen(), ZHANG Xinyu
State Key Laboratory of Metastable Materials Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
Cite this article: 

LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys. Acta Metall Sin, 2021, 57(4): 515-528.

Download:  HTML  PDF(3422KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bulk amorphous alloys possess a metastable structure, which is difficult to process and manufacture into components or parts by conventional forging or welding. Instead, components or parts from bulk amorphous alloys can be fabricated by vacuum casting with the fluidity of bulk amorphous-alloy melts. Based on the casting forming of bulk amorphous alloys, this paper briefly introduces the fluidity and filling ability of bulk amorphous-alloy melts. In addition, the technical methods and applications of vacuum die casting, vacuum suction casting, gravity casting in a water-cooled copper crucible, and phase-change refrigeration casting are also mentioned. The theoretical problems and technical bottlenecks to be resolved in the forming process of bulk amorphous alloys are then discussed. Finally, the engineering application prospects of bulk amorphous alloys are suggested.

Key words:  bulk amorphous alloy      fluidity      casting forming      vacuum die casting      vacuum suction casting     
Received:  20 October 2020     
ZTFLH:  TG139  
Fund: National Natural Science Foundation of China(52071278);National Key Research and Development Program of China(2018YFA0703603)
About author:  MA Mingzhen, professor, Tel: (0335)8074723, E-mail: mz550509@ysu.edu.cn
LIU Riping, professor, Tel: (0335)8074723, E-mail: riping@ysu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00414     OR     https://www.ams.org.cn/EN/Y2021/V57/I4/515

Fig.1  Schematic of fluidity test apparatus and photograph of water-cooled mold[38] (p0—pressure in the suction tube, p1—pressure on the liquid surface)
Fig.2  Influence of casting temperatures and pressures on fluidity length at radii of 2.0 mm (a), 2.5 mm (b), and 3.0 mm (c); influence of casting pressures and radii on fluidity length at 1123 K (d); and longitudinal section of fluidity sample of 6 mm diameter under different casting conditions (e) (I: 1273 K, 0.025 MPa; II: 1173 K, 0.025 MPa; III: 1123 K, 0.020 MPa. Δp—pressure difference between two ends of circular pipe, r—radius of circular tube)[38]
Temperature / KΔp / MPa
0.0200.0250.0300.035
1073
1123
1173
1223
1273
Table 1  Quality of fluidity test sample of 6 mm in diameter[38]
Fig.3  Schematic illustration of the high pressure die casting setup (a), 3D model of the die (b), and completed dies made from heat resistant steel and a copper alloy (c, d)[40]
Fig.4  SEM images of the key cast at 1353 K[40]
Fig.5  Illustration of the entire process vacuum high pressure die casting (EPV-HPDC) equipment and operating mode[41]
Fig.6  Image of Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) smartphone frame and the corresponding runner system (a), and the 3D distribution of the porosity in the smartphone frame (b) (A, B, C, and D denote different regions)[41]
Fig.7  BMG parts with various shapes and used in different fields[41]
Fig.8  Prototyping bulk metallic glass flexsplines, and DSC curves and XRD spectra[46]
Fig.9  Commercial casting of BMG flexsplines[46]
Fig.10  Zirconium-based bulk amorphous alloy castings cast by water-cooled copper crucible melting metal copper mold
Casting moldingCast amorphous alloyAdvantageDisadvantage
technologycasting
Vacuum die castingThin-walled castings such asNear net shape casting, fastLimited casting thickness
phone shells, watch shells,speed, high efficiency(0.5-2.0 mm), low process
notebook computeryield, and there are tiny
accessories, etc.pores
Vacuum suction castingSimple cylinder, disk, ring,Stable filling, controllableNot suitable for casting of
or plate-like castingflow state of alloy meltcomplex shaped castings
Water-cooled copperSuitable for casting moldingAmorphous alloy melt does notThe low overheat of the alloy
crucible meltingof various shapes and sizesreact with the crucible, the alloymelt affects the filling ability
copper mold castingcastingsmelt is clean, and it does notand is prone to produce defects
affect the amorphous formingof insufficient pouring
ability
Ceramic or graphiteSuitable for casting moldingAlloy melt with a largeThe alloy melt reacts with the
crucible melting copperof various shapes and sizescontrollable range of overheat,crucible to reduce the amorphous
mold castingcastingsgood filling ability, easy toforming ability, and it is only
obtain complete castingssuitable for alloy systems with
strong forming ability
Phase transformationSuitable for casting moldingControllable cooling rateAdditional cooling medium is
refrigeration castingof various shapes and sizesrequired and is difficult to
castingsoperate
Table 2  Applicability, advantages and disadvantages of different casting molding technologies
1 Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
2 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
3 Tian H F, Qiao J W, Yang H J, et al. The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media [J]. Appl. Surf. Sci., 2016, 363: 37
4 Li B, Sun W C, Qi H N, et al. Effects of Ag substitution for Fe on glass-forming ability, crystallization kinetics, and mechanical properties of Ni-free Zr-Cu-Al-Fe bulk metallic glasses [J]. J. Alloys Compd., 2020, 827: 154385
5 Jin Z S, Yang Y J, Zhang Z P, et al. Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr-Ti-Cu-Al bulk metallic glasses [J]. J. Alloys Compd., 2019, 806: 668
6 Kramer J. Noconducting modification of metals [J]. Annln Phys., 1934, 19: 37
7 Brenner A, Couch D E, Williams E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J. Res. Natl. Bur. Srtand., 1950, 44: 109
8 Buckel W, Hilsch R. Einfluß der kondensation bei tiefen temperaturen auf den elektrischen widerstand und die supraleitung für verschiedene metalle [J]. Z. Phys., 1954, 138: 109
9 Turnbull D, Cohen M H. Concerning reconstructive transformation and formation of glass [J]. J. Chem. Phys., 1958, 29: 1049
10 Chen H S, Turnbull D. Evidence of a glass-liquid transition in a gold-germanium-silicon alloy [J]. J. Chem. Phys., 1968, 48: 2560
11 Klement W K, Willens P H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
12 Inoue A, Kohinata M, Tasi A P, et al. Mg-Ni-La amorphous alloys with a wide supercooled liquid region [J]. Mater Trans. JIM, 1989, 30: 378
13 Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans. JIM, 1989, 30: 965
14 Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.8 [J]. Appl. Phys. Lett., 1993, 63: 2342
15 Mukherjee S, Schroers J, Zhou Z, et al. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability [J]. Acta Mater., 2004, 52: 3689
16 Saini S, Srivastava A P, Neogy S. The effect of Ag addition on the crystallization kinetics and glass forming ability of Zr-(CuAg)-Al bulk metallic glass [J]. J. Alloys Compd., 2019, 772: 961
17 Yang Y J, Cheng B Y, Jin Z S, et al. Crystallization kinetics and mechanical properties of Zr56Cu24Al9Ni7-xTi4Agx (x=0, 1, 3, 5, and 7) metallic glasses [J]. J. Alloys Compd., 2020, 816: 152589
18 Rahvard M M, Tamizifar M, Ali Boutorabi S M. The effect of Ag addition on the non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 bulk metallic glass [J]. J. Non-Cryst. Solids, 2018, 481: 74
19 Wang Z, Ketov S V, Chen C L, et al. Nucleation and thermal stability of an icosahedral nanophase during the early crystallization stage in Zr-Co-Cu-Al metallic glasses [J]. Acta Mater., 2017, 132: 298
20 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
21 Dandana W, Hajlaoui K. Effect of hydrogen addition on the mechanical properties of Zr-based metallic glass [J]. J. Alloys Compd., 2018, 742: 563
22 Bian Z, He G, Chen G L. Investigation of shear bands under compressive testing for Zr-base bulk metallic glasses containing nanocrystals [J]. Scr. Mater., 2002, 46: 407
23 Zan Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress [J]. Nat. Mater., 2006, 5: 857
24 Ma D Q, Jiao W T, Zhang Y F, et al. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites [J]. J. Alloys Compd., 2015, 624: 9
25 Hilke S, Rösner H, Geissler D, et al. The influence of deformation on the medium-range order of a Zr-based bulk metallic glass characterized by variable resolution fluctuation electron microscopy [J]. Acta Mater., 2019, 171: 275
26 Fu J, Zhu Y H, Zheng C, et al. Effect of laser shock peening on the compressive deformation and plastic behavior of Zr-based bulk metallic glass [J]. Opt. Lasers Eng., 2016, 86: 53
27 Ma D Q, Li J, Zhang Y F, et al. Effect of compositional tailoring on the glass-forming ability and mechanical properties of TiZr-based bulk metallic glass matrix composites [J]. Mater. Sci. Eng., 2014, A612: 310
28 Zhong H, Chen J, Dai L Y, et al. Effect of counterpart material on the tribological properties of Zr-based bulk metallic glass under relatively heavy loads [J]. Wear, 2016, 346-347: 22
29 Zhong H, Chen J, Dai L Y, et al. Tribological behaviors of Zr-based bulk metallic glass versus Zr-based bulk metallic glass under relative heavy loads [J]. Intermetallics, 2015, 65: 88
30 Yue Y, Wang R, Ma D Q, et al. Fatigue behavior of a Zr-based bulk metallic glass under uniaxial tension-tension and three-point bending loading mode [J]. Intermetallics, 2015, 60: 86
31 Telford M. The case for bulk metallic glass [J]. Mater. Today, 2004, 7: 36
32 Johnson W L. Fundamental aspects of bulk metallic glass formation in multicomponent alloys [J]. Mater. Sci. Forum., 1996, 225: 35
33 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
34 Yang Y J, Liu W C, Guo D, et al. Research progress in casting forming of bulk amorphous alloy [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 1354
杨玉婧, 刘文超, 郭 栋等. 块体非晶合金铸造成形的研究现状 [J]. 特种铸造及有色合金, 2017, 37: 1354
35 Wu S F. New breakthrough in research and industrialization of amorphous materials in Dongguan EONTEC. Co., Ltd. [EB/OL]. Science and technology media network, (2015-01-27).
吴少芳. 宜安科技非晶材料研究与产业化获新突破[EB/OL]. 科技传媒网, (2015-01-27).
36 Ma M Z, Zong H T, Wang H Y, et al. The fluidity and molding ability of glass-forming Zr-based alloy melt [J]. Sci. China, 2008, 51G: 438
37 Ma M Z, Liu R P, Ma D Q, et al. Flowability testing method and device for zirconium base block amorphous alloy melt [P]. Chin Pat, 201310083859.9, 2015马明臻, 刘日平, 马德强等. 锆基块体非晶合金熔体流动性测试方法及其装置 [P]. 中国专利, 201310083859.9, 2015)
38 Ma D Q, Ma X Z, Zhang H Y, et al. Evaluation of casting fluidity and filling capacity of Zr-based amorphous metal melts [J]. J. Iron Steel Res. Int., 2018, 25: 1163
39 Hofmann D C, Roberts S N. Microgravity metal processing: From undercooled liquids to bulk metallic glasses [J]. NPJ Microgravity, 2015, 1: 15003
40 Ramasamy P, Szabo A, Borzel S, et al. High pressure die casting of Fe-based metallic glass [J]. Sci. Rep., 2016, 6: 35258
41 Liu L H, Zhang T, Liu Z Y, et al. Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting [J]. Materials, 2018, 11: 2338
42 Liu L H, Zhang T, Liu Z Y, et al. Abnormal increase of glass forming ability under rising mold temperature in high pressure die casting [J]. Mater. Lett., 2019, 247: 215
43 Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans. JIM, 1992, 33: 937
44 Laws K J, Gun B, Ferry M. Effect of die-casting parameters on the production of high quality bulk metallic glass samples [J]. Mater. Sci. Eng., 2006, A425: 114
45 Inoue A, Nakamura T, Sugita T, et al. Bulky La-Al-TM (TM = transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans. JIM, 1993, 34: 351
46 Hofmann D C, Polit-Casillas R, Roberts S N, et al. Castable bulk metallic glass strain wave gears: Towards decreasing the cost of high-performance robotics [J]. Sci. Rep., 2016, 6: 37773
47 Ma M Z, Liu R P, Zhang X Y, et al. Casting method of zirconium-based bulk amorphous alloy casting [P]. Chin Pat, 201210367027.5, 2014
马明臻, 刘日平, 张新宇等. 一种锆基块体非晶合金铸件的铸造成形方法 [P]. 中国专利, 201210367027.5, 2014)
48 Wang W K, Zhan Z J. Method for phase change refrigeration to induce material controlled coagulation [P]. Chin Pat, 200410079097.6, 2009
王文魁, 战再吉. 相变致冷诱发凝固控制材料组织的方法 [P]. 中国专利, 200410079097.6, 2009)
49 Li P J, Liu X S, Pan L L, et al. Manufacture of die casting equipment for Zr based bulk metallic glass and its industrialization progress [A]. Special Issue of 2016 Annual Meeting of Special Casting & Nonferrous Alloy [C]. Nantong: Chinese Society of Mechanical Engineering, Chinese Society of Ordnance Engineering, 2016: 254
李培杰, 刘相尚, 潘玲玲等. 锆基非晶合金的压铸设备的开发及产业化进展 [A]. 2016年(第八届)中国压铸、挤压铸造、半固态加工年会 [C]. 南通: 中国机械工程学会, 中国兵工学会, 2016: 254
50 Zhang F L. Amorphous alloy diecasting equipment and amorphous alloy diecasting process [P]. Chin Pat, 201110421420.3, 2015
张法亮. 非晶合金压铸设备及非晶合金压铸工艺 [P]. 中国专利, 201110421420.3, 2015)
51 Science and Technology Media Network/Today's Headlines. Yi'an Dongguan EONTEC Co., Ltd. benefits continuously, and the first liquid metal die casting machine in China comes out [EB/OL].(2016-11-30).
科技传媒网/今日头条. 宜安科技利好不断, 参股公司国内首台液态金属压铸机问世[EB/OL]. (2016-11-30).
[1] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[3] Yaoxiang GENG,Kaiming HAN,Yingmin WANG,Jianbing QIANG,Qing WANG,Chuang DONG,Guifeng ZHANG,O TEGUS,Peter HAÜSSLER. COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL[J]. 金属学报, 2015, 51(8): 1017-1024.
[4] SUN Yajuan WEI Xianshun HUANG Yongjiang SHEN Jun. EFFECT OF Gd ADDITION ON THE GLASS FORMING ABILITY AND MECHANICAL PROPERTIES IN A Zr–BASED BULK AMORPHOUS ALLOY[J]. 金属学报, 2009, 45(2): 243-248.
[5] HE Lin. Effect of Oxygen on the Thermal Stability of Zr-Cu-Ni-Al-Ti Bulk Amorphous Alloy[J]. 金属学报, 2006, 42(2): 134-138 .
[6] XIA Junhai; QIANG Jianbing; WANG Yingmin; WANG Qing; HUANG Huogen; DONG Chuang. FORMATION OF Cu-BASED BULK AMORPHOUS ALLOY IN THE Cu-Zr-Nb SYSTEM[J]. 金属学报, 2005, 41(9): 999-1003 .
[7] XING Dawei; SUN Jianfei; SHEN Jun; WANG Gang; YAN Ming; LIU Yu. EFFECT OF Ti ADDITION ON THE GLASS--FORMING ABILITY OF (Zr0.59Cu0.18Ni0.13Al0.10)100-xTix ALLOYS[J]. 金属学报, 2004, 40(4): 416-420 .
No Suggested Reading articles found!