Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (10): 1014-1018     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of homogenizing treatment on microstructures and properties of AZ91 alloy
北京科技大学材料科学与工程学院
Cite this article: 

. Effect of homogenizing treatment on microstructures and properties of AZ91 alloy. Acta Metall Sin, 2006, 42(10): 1014-1018 .

Download:  PDF(318KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  There are reticular coarse Mg17Al12 and component segregation generated during solidification on grain boundary of AZ91 magnesium alloy as cast, which deteriorate the mechanical properties and the workability of ingots severely. In order to improve the workability, homogenizing treatment is researched. The homogenizing temperature is 350, 380, 420, 450℃ and the holding time is 5, 10, 15, 24h. After homogenizing treatment, the Mg17Al12 phase is scattered on the α-Mg matrix as fine grains, and dendritic segregation is eliminated almost. It is concluded from the mechanical properties test that the tensile strength of the AZ91 on the condition of as-cast, homogenized at 380℃15h and 420℃5h is about 163MPa, 243MPa and 246MPa, while the elongation is about 3.2%, 11.2% and 10%.
Key words:  magnesium alloy      homogenizing treatment      microstructure      mechanical property      
Received:  13 December 2005     
ZTFLH:  TG166.4  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I10/1014

[1]Agfion E,Bronfin B.Mater Sci Forum,2000;350-351:19
[2]Cahn R W,Haasen P,Kramer E J.Materials Science and Technology.New York:VCH Publishers Inc,1996
[3]Mordike B L,Ebert T.Mater Sci Eng,2001;A302:37
[4]Dahle A K,Lee Y C,Nave M D,Schaffer P L,StJohn D H.J Light Met,2001;(1):61
[5]Yan Y Q,Zhang T J,Zhou L,Deng J.Rare Met,2004;23:220
[6]LüY Z Wang Q D,Ding W J.Mater Lett,2000;44:265
[7]Zhang Y Z,Zhang K,Cui D J,Wu X P,Fan J Z,Cui B,Zheng Y X,Lei J.Foundry,2000;49(12):74(张永忠,张奎,崔代金,吴绪平,樊建中,崔波,郑宇新,雷健.铸造,2000;49(12):74)
[8]Huang G S,Wang L Y,Huang G J,Pan F S.J Chongqing Univ(Nat Sci),2004;27(11):18(黄光胜,汪凌云,黄光杰,潘复生.重庆大学学报(自然科学版),2004;27(11):18)
[9]Peng J,Zhang D F,Yang C M,Ding P D.J Mater Eng,2004;(8):32(彭建,张丁非,杨椿楣,丁培道.材料工程,2004;(8):32)
[10]Xie J X,Liu X F,Wang Z X,Jin J B.China Pat,CN200510126459.7,2005-12-12(谢建新,刘雪峰,王智祥,金军兵.中国发明专利,CN200510126459.7,2005-12-12)
[11]Liu Z,Zhang K,Zeng X Q.Theoretical Basis and Applications of Magnesium-Base Alloys.Beijing:China Machine Press, 2902(刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002)
[12]Cho S S,Chun B S,Won C W.J Mater Sci,1999; 34:4311
[13]Duly D,Brechet Y.Acta Metall Mater,1994;42:3035
[14]Duly D,Simon J P,Brechet Y.Acta Metall Mater,1995;43:101m
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!