Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (9): 969-973     DOI:
Research Articles Current Issue | Archive | Adv Search |
DISSOLUTION BEHAVIOR OF CARBIDE IN Ti-60 TITANIUM ALLOYS WITH BIMODAL MICROSTRUCTURE DURING AGEING
ZHANG Shangzhou; WANG Qingjiang; LIU Yuyin; YANG Rui
School of Environment and Materials Engineering; Yantai University; Yantai 264005
Cite this article: 

ZHANG Shangzhou; WANG Qingjiang; LIU Yuyin; YANG Rui. DISSOLUTION BEHAVIOR OF CARBIDE IN Ti-60 TITANIUM ALLOYS WITH BIMODAL MICROSTRUCTURE DURING AGEING. Acta Metall Sin, 2005, 41(9): 969-973 .

Download:  PDF(573KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Dissolution behavior of carbide TiC in Ti-60 alloys with bimodal microstructure during ageing was investigated. Solution treatment in the (α+β) phase field followed by quenching in water resulted in the precipitation of TiC carbide particles, most of which distributed in the β transformed grains and seldom at the interface of the primary α (αp) and β transformed grains or in the αp phase. The (α+β) solution-treated specimens were aged in the temperature range of 750 to 850 ℃. For the carbide precipitate in the β transformed grain, the dissolution of carbide preferentially occurs from the β phase side, leading to the irregular shape of carbide particles and the β phase-poor matrix immediately surrounding the carbide. The carbide in the αp phase dissolves at an uniformly slow rate. The mechanisms of carbide dissolution are discussed in terms of the peritectoid transformation between the β phase and carbide, the movement of dislocations and the influence of curvature.
Key words:  Ti-60 titanium alloy      carbide dissolution      
Received:  07 March 2005     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I9/969

[1] Riaz S, Flower H M, West D R F. Mater Sci Technol, 2002; 18: 941
[2] Zhang E L,Jin Y X, Zeng S Y. J Mater Sci Lett, 2001; 20: 1063
[3] Jin Y X, Zeng S Y, Wang H W. Rare Met Mater Eng, 2002; 31: 358 (金云学,曾松岩,王宏伟.稀有金属材料与工程,2002;31: 358)
[4] Chen L H, Blenkinsop P A, Jones I P. Mater Sci Technol, 2001; 17: 573
[5] Li Y G, Blenkinsop P A, Loretto M H, Rugg D, Voice W. Acta Mater, 1999; 47: 2889
[6] Li Y G, Loretto M H, Rugg D, Voice W. Ada Mater, 2001; 49: 3011
[7] Haasen P. Phase Transformations in Materials.Weinheim, Germany: VCH Verlagsgesellschaft mbH, 1991: 245
[8] Cam G, Flower H M, West D R F. Mater Sci Technol, 1991; 7: 505
[9] Aaron H B, Kolter G R. Metall Trans, 1971; 2: 393
[10] Hewitt P, Butler E P. Acta Metall, 1984; 34: 1163
[11] Zhang S Z, Li G P, Wang Q J, Liu Y Y, Yang R. Mater Sci Technol, 2004; 20: 167
[12] Murry J L. Binary Alloy Phase Diagrams. Materials Park, Ohio: ASM International, 1986: 593
[13] Villars P, Prince A, Okamoto H. Handbook of Ternary Phase Diagrams. Materials Park, Ohio: ASM International, 1997: 2906
[14] Gundel D B, Wawner F E. Scr Metall Mater,1991;25: 437
[1] . Microstructure and Mechanical Properties of As-cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 金属学报, 0, (): 0-0.
[2] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] . Hot Deformation Behavior of Ti30Ni50Hf20 High Temperature Shape Memory Alloy[J]. 金属学报, 0, (): 0-0.
[6] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] . Research Progress on Additive Manufacturing TiAl Alloy[J]. 金属学报, 0, (): 0-0.
[10] . Evolution of Macrosegregation During Three-Stage Vacuum Arc Remelting of Titanium Alloys[J]. 金属学报, 0, (): 0-0.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[13] . Effect of powder particle size on Forming of shrouded impeller[J]. 金属学报, 0, (): 0-0.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!