Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (3): 225-230     DOI:
Research Articles Current Issue | Archive | Adv Search |
A general crystallographic model of fcc/bcc(bct) martensitic nucleation and growth in steels
YANG Jinbo; YANG Zhigang; QIU Dong; ZHANG Wenzheng; ZHANG Chi; BAI Bingzhe; FANG Hongsheng
Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
Cite this article: 

YANG Jinbo; YANG Zhigang; QIU Dong; ZHANG Wenzheng; ZHANG Chi; BAI Bingzhe; FANG Hongsheng. A general crystallographic model of fcc/bcc(bct) martensitic nucleation and growth in steels. Acta Metall Sin, 2005, 41(3): 225-230 .

Download:  PDF(265KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The crystallography of fcc/bcc(bct) martensite transformation, including nucleation and growth, has been discussed from the viewpoint of invariant-line and O-lattice theory. The formation of martensite is accomplished by the immigration of well-defined glissile interface (121)fcc type and its misfit dislocations can produce the lattice invariant deformation (LID) on the basis of phenomenal theory of martensitic crystallography (PTMC), however, LID is retarded slightly after the migration of interphase (121)fcc, i.e.a thin plate-like zone exists without LID in martensite near the well-defined interface. When the temperature reduces to the Ms point, the lattice parameter of austenite matrix is √3/2 times that of the martensite without LID. This critical condition for spontaneous transformation agrees with that the stack fault energy in matrix is less than zero according to Olson and Cohen's nucleation model.
Key words:  martensite      phenomenal theory of martensitic crystallography (PTMC)      invariant line      
Received:  25 May 2004     
ZTFLH:  TG111.5  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I3/225

[1] Cohen M, Olson G B, Clapp P C. In: Owen W S, Cohen M, Wayman C M, eds., Proc Int Conf on Martensitic Transformations, ICOMAT 79, Cambridge, Mass: MIT Press, 1979: 1
[2] Christian J W. Mater Sci Eng, 1990; A127: 215
[3] Aaronson H I, Hall M G. Metall Mater Trans, 1994; 25A: 1797
[4] Olson G B, Cohen M. Metall Trans, 1976; 7A: 1905
[5] Olson G B, Cohen M. Metall Trans, 1976; 7A: 1915
[6] Bogers A J, Burgers W G. Acta Metall, 1964; 12: 255
[7] Roytburd A L, Khachaturyan A G. Phys Met Metall, 1970; 30: 68
[8] Kurdjumov G V, Khachaturyan A G. Acta Metall, 1975; 23: 1077
[9] Wechsler M S, Lieberman D S, Read T A. Trans AIME, 1953; 197: 1503
[10] Bowles J S, Mackenzie J K. Acta Metall, 1954; 2: 129
[11] Dahmen U, Westmacott K H. In: Aaronson H I, et al, eds., Proc Int Conf on Solid-Solid Phase Transformation, Warrendale, Pa: The Metallurgical Society of AIME, 1981: 433
[12] Dahmen U. Acta Metall, 1982; 30: 63
[13] Luo C P, Weatherly G C. Acta Metall, 1987; 35: 1963
[14] Zhang W Z, Purdy G R. Philos Mag, 1993; 68A: 291
[15] Zhang W Z, Weatherly G C. Acta Mater, 1998; 46: 1837
[16] Qiu D, Zhang W Z. Philos Mag, 2003; 83: 3093
[17] Frank F C. Acta Metall, 1953; 1: 15
[18] Srinivasan G R, Wayman C M. Acta Metall, 1968; 16: 621
[19] Hirth J P, Spanos G, Hall M G, Aaronson H I. Acta Mater, 1998; 46: 857
[20] Liu X, Zhong F, Zhang J X, Zhang M X, Kang M K, Guo Z Q. Phys Rev, 1995; 52B: 9970
[21] Ridley N, Stuart H, Zwell L. TMS AIME, 1969; 245: 1834
[22] Wayman C M. Introduction to the Crystallography of Martensitic Transformations. New York: The MacMil-lan Co., 1964: 146
[23] Greninger A B, Troiano A R. Trans AIME, 1940; 140: 307
[24] Greninger A B, Troiano A R. Trans AIME, 1949; 185: 590
[25] Otte H M, Read T A. Trans AIME, 1957; 209: 412
[26] Johnson K A, Wayman C M. Acta Crystallogr, 1963; 16: 480
[27] Read R P. Acta Metall, 1962; 10: 865
[28] Moritani T, Miyajima N, Furuhara T, Maki T. Scr Mater, 2002; 47: 193
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[6] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[7] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[8] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[9] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[10] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[11] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[12] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[13] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[14] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[15] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
No Suggested Reading articles found!