Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 523-526     DOI:
Research Articles Current Issue | Archive | Adv Search |
Internal Friction of Nano--Grained Fe--25\%Ni Alloy Bulk
WANG Hongbin; WANG Xiaoyu; ZHANG Jihua; XU Zuyao (T. Y. Hsu)
School of Materials Science and Engineering; Shanghai Jaotong University; Shanghai 200030
Cite this article: 

WANG Hongbin; WANG Xiaoyu; ZHANG Jihua; XU Zuyao T. Y. Hsu. Internal Friction of Nano--Grained Fe--25\%Ni Alloy Bulk. Acta Metall Sin, 2004, 40(5): 523-526 .

Download:  PDF(2180KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The anelasticity spectrum of a nano-grained Fe-25%Ni (atomic fraction) bulk prepared by an inert gas condensation and $in~situ$ warm consolidation technique was measured in the 20--400 ℃ temperature range by means of a dynamic mechanical analyzer (DMA). An internal friction peak accompanied with soft modulus was observed near 200 ℃. It was proved by XRD results that the peak was associated with the reverse phase transformation of stress-induced martensite. The abnormal modulus-temperature spectrum was observed and discussed.
Key words:  internal friction      nano-grain Fe-Ni alloy      phase transformation      
Received:  29 December 2002     
ZTFLH:  TG113.226  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/523

[1] Weller M, Diehl J, Schaefer H E. Philos Mag, 1991; 63A: 527
[2] Scheil E, Muller J. Arch Eisenbuttenwesen, 1956; 27:801
[3] Kajiwara S, Ohno S, Honma K. Philos Mag, 1991; 63A: 625
[4] Zhou Y-H, Harmelin M, Bigot J. Mater Sci Eng, 1990; A124:241
[5] Kuhrt C. Schultz L. J Appl Phys, 1993; 73:1975
[6] Gleiter H. Prog Mater Sci, 1989; 33:223
[7] Xu Z Y(T. Y. Hsu). Shanghai Met, 2002; 24(1) : 11(徐祖耀.上海金属,2002;24(1) :11)
[8] Xu Z Y(T. Y. Hsu). Rare Met Mater Eng, 2001; 30(Suppl.): 685(徐祖耀.稀有金属材料与工程,2001;30(增刊):685)
[9] Swartzendruber L J, Itkin V P, Alcock C B. J Phase Equilib, 1991; 12:288
[10] Patel J R, Cohe M. Acta Metall, 1953; 1:531
[11] Tamura I. Met Sci, 1982; 16:245
[12] Meng Q, Rong Y, Hsu T Y. Phys Rev, 2002, 65B: 174118
[13] Belko V N, Darinskii B M, Postnikov V S, Sharshakov I M. Fiz Met Metalloved, 1969; 27:141
[14] Okuda S, Tang F, Tanimoto H, Iwamoto Y. J Alloys Compd, 1994; 211/212:494
[15] Bonetti E, Del Bianco L, Pasquini L, Sampaolesi E. Nano Struct Mater, 1998; 10:741
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[8] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[9] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[10] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[11] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[12] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[13] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[14] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[15] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
No Suggested Reading articles found!