Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (12): 1257-1263     DOI:
Research Articles Current Issue | Archive | Adv Search |
INFLUENCE OF Mn CONTENT ON DYNAMIC RECRYSTALLIZATION OF FERRITE IN LOW CARBON STEELS
LI Longfei; YANG Wangyue;SUN Zuqing
School of Materials Science & Engineering; University of Science & Technology Beijing; Beijing 100083
Cite this article: 

LI Longfei; YANG Wangyue; SUN Zuqing. INFLUENCE OF Mn CONTENT ON DYNAMIC RECRYSTALLIZATION OF FERRITE IN LOW CARBON STEELS. Acta Metall Sin, 2004, 40(12): 1257-1263 .

Download:  PDF(687KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hot deformation behaviors and the microstructure evolution of three low carbon steels with similar C compositions and different Mn mass fractions (0.48%, 0.84% and 1.29%, respectively) are investigated by uniaxial hot compression at deformation temperatures of 700 ℃ and 600 ℃ and strain rates of 10 1 s -1 to 10 -3 s -1. The effect of Mn on dynamic recrystallization of ferrite is analyzed. The results indicate that dynamic recrystallization of ferrite occurs in these low carbon steels under certain deformation conditions, which range is wider as the content of Mn is lower. The effect of Mn on dynamic recrystallization of ferrite is that the increase of Mn content leads to the increases of pearlite amount and the deformation activity energy when deformed in the ferrite region, the former is beneficial to the dynamic recrystallization and the latter is just opposite. Because the latter is dominant, the increase of Mn content in low carbon steel is unfavorable for the progress of dynamic recrystallization of ferrite. At the deformation condition that the progress of dynamic recrystallization of ferrite can occur completely, the increase of Mn content results in a microstructure with finer ferrite grains.
Key words:  Mn      ferrite      dynamic recrystallization      
Received:  10 October 2003     
ZTFLH:  TG111.7  
  TG142.31  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I12/1257

[1] Zhou R F,Yang W Y, Sun Z Q. Acta Metall Sin, 2004; 40:1 (周荣锋,杨王玥,孙祖庆.金属学报,2004;40:1)
[2] Glover G, Sellars C M. Metall Trans, 1973; 4: 765
[3] Tsuji N, Matsubara Y, Saito Y. Scr Mater, 1997; 37: 477
[4] Najafi-Zadeh A, Jonas J J, Yue S. Metall Trans, 1992;23A: 2607
[5] Gao F, Xu Y, Song B, Xia K. Metall Trans, 2000; 31A:21
[6] Yagi H, Tsuji N, Saito Y. Tetsu Hagane, 2000; 86: 349
[7] Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2003; 39:419 (李龙飞,杨王玥,孙祖庆.金属学报,2003;39:419)
[8] Yang W Y, Wang H M, Li L F, Sun Z Q. Acta Metall Sin,2003; 39: 691 (杨王玥,王红梅,李龙飞,孙祖庆.金属学报,2003;39:691)
[9] Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2004; 40:141 (李龙飞,杨王玥,孙祖庆.金属学报,2004;40:141)
[10] Kohsaku U, Naoki Y, Osamu A, ISIJ Int, 1994; 34: 85
[1] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[4] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[5] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[6] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[7] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[9] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[11] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[12] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[13] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[14] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[15] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
No Suggested Reading articles found!