Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (8): 1044-1054    DOI: 10.11900/0412.1961.2021.00023
Research paper Current Issue | Archive | Adv Search |
Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting
GENG Yaoxiang(), TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Cite this article: 

GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting. Acta Metall Sin, 2022, 58(8): 1044-1054.

Download:  HTML  PDF(3381KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Selective laser melting (SLM) has been widely used in many fields owing to its high manufacturing accuracy and excellent performance. A rapid solidification rate of 103-106 K/s is achieved during the SLM process, resulting in unique microstructures and highly supersaturated solid solutions beyond the normal solubility limits of alloying elements, thereby providing new opportunities for the development of microstructures and optimization of their properties. To date, SLM has been used for manufacturing a wide range of metallic materials, such as Ti-based alloys, superalloys, and stainless steel. However, specific difficulties are associated with melting aluminum powder using a laser owing to the high laser reflectivity, tenacious surface oxide, poor spreadability (particularly of low-density aluminum powder), high thermal conductivity, and large freezing ranges of many aluminum alloys. Consequently, high-strength aluminum alloys, such as the 2xxx, 6xxx, and 7xxx series, exhibit poor SLM formability. The SLM-formed aluminum alloys that are practically applied in industries at present are limited to the Al-Si base and Al-Mg-(Sc, Zr) alloys. Al-Mg-(Sc, Zr) alloys achieve high strength and ductility with low mechanical anisotropy, thus showing considerable advantages over conventional and SLM-formed Al-Si-Mg alloys. However, the strength of the present SLM-formed aluminum alloys is still lower than that of conventional high-performance ones. Based on the technical characteristics of liquid quenching in SLM, this study focuses on designing high-strength Al-(Mn, Mg)-(Sc, Zr) aluminum alloys specifically for SLM by simultaneously increasing the (Mn + Mg) and (Sc + Zr) contents. The effect of aging treatment on the microstructure and mechanical properties of the SLM-formed alloy was systematically studied. Results show that the alloy exhibits good SLM formability with a relative density of more than 99.0%. A typical multilayer distribution of laser tracks generated in the SLM process can be observed. Few columnar grains are observed in the center of the molten pool, and numerous equiaxed grains are present in molten pool boundaries with an average grain size of 4 μm. The mechanical properties of the alloys are considerably improved after aging treatment at a low temperature (≤ 350°C) owing to the precipitation of Al3Sc nanoparticles. The maximum Vickers hardness, maximum compressive yield strength, and maximum compressive strength of the aged alloy are (218 ± 5) HV, (653 ± 3) MPa, and (752 ± 7) MPa, respectively, with a compressive elongation of greater than 60% for all samples, higher than that of most SLM-formed aluminum alloys and T6-treated AA7075 alloys. Combining various strengthening mechanisms facilitates SLM-formed Al-(Mn, Mg)-(Sc, Zr) alloys with high strength.

Key words:  selective laser melting      Al-(Mn, Mg)-(Sc, Zr) alloy      aging treatment      mechanical property     
Received:  14 January 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52001140);National Natural Science Foundation of China(51801079);Natural Science Foundation of Jiangsu Province(BK20180985);Natural Science Foundation of Jiangsu Province(BK20180987)
About author:  GENG Yaoxiang, associate professor, Tel: (0511)84401184, E-mail: yaoxianggeng@163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00023     OR     https://www.ams.org.cn/EN/Y2022/V58/I8/1044

SpecimenMnMgScZrFeAl
Powder5.52.71.00.90.1Bal.
SLM-formed5.42.61.10.80.1Bal.
Table 1  Chemical compositions of Al-(Mn, Mg)-(Sc, Zr) powder and selective laser melting (SLM)-formed specimen
Fig.1  Surface (a) and section (b) SEM images of Al-(Mn, Mg)-(Sc, Zr) powder (Inset in Fig.1a shows the size distribution of powder, D50—average particle diameter)
Fig.2  Photography of SLM-formed Al-(Mn, Mg)-(Sc, Zr) samples
Fig.3  Evolution of the relative density of the SLM-formed Al-(Mn, Mg)-(Sc, Zr) samples with the scanning rate
Fig.4  OM and upper surface SEM images (insets) of the SLM-formed Al-(Mn, Mg)-(Sc, Zr) samples manufacturing at the scanning rates of 700 mm/s (a), 900 mm/s (b), and 1100 mm/s (c)
Fig.5  Longitudinal section OM (a) and SEM (b) images of the SLM-formed Al-(Mn, Mg)-(Sc, Zr) sample manufacturing at a scanning rate of 900 mm/s (Inset in Fig.5b shows the composition analysis (atomic fraction) of precipitates)
Fig.6  EBSD orientation map (a) and pole figures (b) of the SLM-formed Al-(Mn, Mg)-(Sc, Zr) sample manufacturing at a scanning rate of 900 mm/s
Fig.7  OM images of SLM-formed Al-(Mn, Mg)-(Sc, Zr) samples aged at 200oC (a), 300oC (b), 400oC (c), and 500oC (d) for 2 h
Fig.8  SEM images of molten pool of SLM-formed Al-(Mn, Mg)-(Sc, Zr) samples aged at 200oC (a), 300oC (b), 400oC (c), and 500oC (d) for 2 h
Fig.9  XRD spectra (a) and local enlargement (b) of the SLM-formed Al-(Mn, Mg)-(Sc, Zr) samples aged at different temperatures for 2 h
Fig.10  Vickers hardnesses (a), compressive true stress-true strain curves (b), compressive mechanical properties (c) of SLM-formed Al-(Mn, Mg)-(Sc, Zr) samples aged at different temperatures for 2 h, and a comparison with others aluminum alloys (d)
1 Zhang L C, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy [J]. Scr. Mater., 2011, 65: 21
doi: 10.1016/j.scriptamat.2011.03.024
2 Lin X, Huang W D. Laser additive manufacturing of high-performance metal components [J]. Sci. China Inform. Sci., 2015, 45: 1111
林 鑫, 黄卫东. 高性能金属构件的激光增材制造 [J]. 中国科学: 信息科学, 2015, 45: 1111
3 Song B, Dong S J, Coddet C. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC [J]. Scr. Mater., 2014, 75: 90
doi: 10.1016/j.scriptamat.2013.11.031
4 Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67: 185
doi: 10.1016/j.scriptamat.2012.04.013
5 Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs [J]. J. Orthop. Res., 2016, 34: 369
doi: 10.1002/jor.23075
6 Geng Y X, Fan S M, Jian J L, et al. Mechanical properties of AlSiMg alloy specifically designed for selective laser melting [J]. Acta Metall. Sin., 2020, 56: 821
耿遥祥, 樊世敏, 简江林 等. 选区激光熔化专用AlSiMg合金成分设计及力学性能 [J]. 金属学报, 2020, 56: 821
doi: 10.11900/0412.1961.2019.00306
7 Zheng Z, Wang L F, Yan B. Research progress of metal materials for 3D printing [J]. Shanghai Nonferrous Met., 2016, 37: 57
郑 增, 王联凤, 严 彪. 3D打印金属材料研究进展 [J]. 上海有色金属, 2016, 37: 57
8 Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
9 Mertens A I, Delahaye J, Lecomte-Beckers J. Fusion-based additive manufacturing for processing aluminum alloys: State-of-the-art and challenges [J]. Adv. Eng. Mater., 2017, 19: 170003
10 Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 40
11 Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
12 Montero-Sistiaga M L, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting [J]. J. Mater. Process. Technol., 2016, 238: 437
doi: 10.1016/j.jmatprotec.2016.08.003
13 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
14 Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
张文奇, 朱海红, 胡志恒 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
doi: 10.11900/0412.1961.2016.00472
15 Yan Q, Song B, Shi Y S. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting [J]. J. Mater. Sci. Technol., 2020, 41: 199
doi: 10.1016/j.jmst.2019.08.049
16 Dai D H, Gu D D, Zhang H, et al. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts [J]. Opt. Laser Technol., 2018, 99: 91
doi: 10.1016/j.optlastec.2017.08.015
17 Du D F, Haley J C, Dong A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy [J]. Mater. Des., 2019, 181: 107923
doi: 10.1016/j.matdes.2019.107923
18 Li X P, Wang X J, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility [J]. Acta Mater., 2015, 95: 74
doi: 10.1016/j.actamat.2015.05.017
19 Wang M, Song B, Wei Q S, et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy [J]. Mater. Sci. Eng., 2019, A729: 463
20 Geng Y X, Wang Y M, Xu J H, et al. A high-strength AlSiMg1.4 alloy fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 862: 159103
21 Hou Y, Geng Y X, Chen J H, et al. Selective laser melting of AlSiMg3 alloy with super-hardness [J]. Rare Met. Mater. Eng., 2020, 49: 3943
侯 裕, 耿遥祥, 陈金汉 等. 选区激光熔化成形高硬度AlSiMg3合金 [J]. 稀有金属材料与工程, 2020, 49: 3943
22 Nieh T G, Hsiung L M, Wadsworth J, et al. High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy [J]. Acta Mater., 1998, 46: 2789
doi: 10.1016/S1359-6454(97)00452-7
23 Xie Y H, Lu Z, Dai S L. Mechanical behavior of Al-6Mg-0.2Sc aluminum alloys at elevated temperature [J]. Mater. Eng., 2007, (3): 49
谢优华, 陆 政, 戴圣龙. Al-6Mg- 0.2Sc铝合金高温力学行为研究 [J]. 材料工程, 2007, (3): 49
24 Chen J H, Geng Y X, Hou Y, et al. Formation and mechanical properties of Al-Mg-Sc-Zr alloy prepared by selective laser melting [J]. Rare Met. Mater. Eng., 2020, 49: 3882
陈金汉, 耿遥祥, 侯 裕 等. 选区激光熔化Al-Mg-Sc-Zr合金成形性及力学性能 [J]. 稀有金属材料与工程, 2020, 49: 3882
25 Schmidtke K, Palm F, Hawkins A, et al. Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing [J]. Phys. Proced., 2011, 12: 369
doi: 10.1016/j.phpro.2011.03.047
26 Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, A701: 264
27 Spierings A B, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition [J]. Addit. Manuf., 2018, 20: 173
28 Spierings A B, Dawson K, Uggowitzer P J, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys [J]. Mater. Des., 2018, 140: 134
doi: 10.1016/j.matdes.2017.11.053
29 Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
30 Jia Q B, Zhang F, Rometsch P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting [J]. Acta Mater., 2020, 193: 239
doi: 10.1016/j.actamat.2020.04.015
31 Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
32 Li J. Design, preparation and properties of Al-Mg-(Sc, Zr) alloys for SLM [D]. Zhenjiang: Jiangsu University of Science and Technology, 2019
李 洁. SLM专用Al-Mg-(Sc, Zr)合金成分设计、制备及性能研究 [D]. 镇江: 江苏科技大学, 2019
33 Geng Y X, Tang H, Luo J J, et al. Processability and mechanical properties of high Mg-content Al-Mg-Sc-Zr alloy produced by selective laser melting [J]. Rare Met. Mater. Eng., 2021, 50: 939
耿遥祥, 唐 浩, 罗金杰 等. 高Mg含量Al-Mg-Sc-Zr合金选区激光熔化成形及力学性能研究 [J]. 稀有金属材料与工程, 2021, 50: 939
34 Tang H, Geng Y X, Luo J J, et al. Mechanical properties of high Mg-content Al-Mg-Sc-Zr alloy fabricated by selective laser melting [J]. Met. Mater. Int., 2021, 27: 2592
doi: 10.1007/s12540-020-00907-2
35 Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: Processing, microstructure, and properties [J]. Powder Technol., 2017, 319: 117
doi: 10.1016/j.powtec.2017.06.050
36 Wang Z H, Lin X, Kang N, et al. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure [J]. Addit. Manuf., 2020, 34: 101260.
37 Røyset J, Ryum N. Scandium in aluminium alloys [J]. Int. Mater. Rev., 2005, 50: 19
doi: 10.1179/174328005X14311
38 Tang P J, He X L, Yang B, et al. Microstructure and properties of AlSi10Mg powder for selective laser melting [J]. J. Aeronaut. Mater., 2018, 38(1): 47
唐鹏钧, 何晓磊, 杨 斌 等. 激光选区熔化用AlSi10Mg粉末显微组织与性能 [J]. 航空材料学报, 2018, 38(1): 47
39 Spierings A B, Schneider M, Eggenberger R. Comparison of density measurement techniques for additive manufactured metallic parts [J]. Rapid Prototyp. J., 2011, 17: 380
doi: 10.1108/13552541111156504
40 Weingarten C, Buchbinder D, Pirch N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg [J]. J. Mater. Process. Technol., 2015, 221: 112
doi: 10.1016/j.jmatprotec.2015.02.013
41 Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture [J]. Mater. Des., 2012, 34: 753
doi: 10.1016/j.matdes.2011.06.061
42 Xiao R S, Zhang X Y. Problems and issues in laser beam welding of aluminum-lithium alloys [J]. J. Manuf. Process., 2014, 16: 166
doi: 10.1016/j.jmapro.2013.10.005
43 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting [J]. Addit. Manuf., 2014, 1-4: 77
44 Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
45 Griffiths S, Rossell M D, Croteau J, et al. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy [J]. Mater. Charact., 2018, 143: 34
doi: 10.1016/j.matchar.2018.03.033
46 Spierings A B, Dawson K, Voegtlin M, et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting [J]. CIRP Ann., 2016, 65: 213
doi: 10.1016/j.cirp.2016.04.057
47 Li R D, Chen H, Zhu H B, et al. Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting [J]. Mater. Des., 2019, 168: 107668
doi: 10.1016/j.matdes.2019.107668
48 Yuan J H, Chen H M, Xie W B, et al. Work-softening mechanism of Cu-Cr-Ti-Si alloy [J]. J. Mater. Eng., 2020, 48(11): 140
袁继慧, 陈辉明, 谢伟滨 等. Cu-Cr-Ti-Si合金加工软化的机理 [J]. 材料工程, 2020, 48(11): 140
49 Bi J, Lei Z L, Chen Y B, et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting [J]. Mater. Sci. Eng., 2019, A768: 138478
50 Kimura T, Nakamoto T, Ozaki T, et al. Microstructural formation and characterization mechanisms of selective laser melted Al-Si-Mg alloys with increasing magnesium content [J]. Mater. Sci. Eng., 2019, A754: 786
51 Drapala J, Kuchar L, Kursa M. Preparation of high purity metals by crystallization methods [J]. J. Phys. IV, 1995, 5: 143.
52 Xu G F, Peng X Y, Duan Y L, et al. Research advance on new Al-Mg-Sc-Zr and Al-Zn-Mg-Sc-Zr alloys [J]. Chin. J. Nonferrous Met., 2016, 26: 1577
徐国富, 彭小燕, 段雨露 等. 新型Al-Mg-Sc-Zr和Al-Zn-Mg-Sc-Zr合金的研究进展 [J]. 中国有色金属学报, 2016, 26: 1577
53 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166 pmid: 28336664
54 Varvenne C, Leyson G P M, Ghazisaeidi M, et al. Solute strengthening in random alloys [J]. Acta Mater., 2017, 124: 660
doi: 10.1016/j.actamat.2016.09.046
55 Forbord B, Auran L, Lefebvre W, et al. Rapid precipitation of dispersoids during extrusion of an Al-0.91 wt.%Mn-0.13 wt.%Zr-0.17 wt.%Sc-alloy [J]. Mater. Sci. Eng., 2006, A424: 174
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!