|
|
THE EVOLUTION OF UNIDIRECTIONAL SOLIDIFI-CATION MICROSTRUCTURE OF THE Al-In MONOTECTIC ALLOYS IN HIGH TEMPERATURE GRADIENT |
CUI Hongbao; GUO Jingjie; BI Weisheng; SU Yanqing; WU Shiping; FU Hengzhi |
Department of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001 |
|
Cite this article:
CUI Hongbao; GUO Jingjie; BI Weisheng; SU Yanqing; WU Shiping; FU Hengzhi. THE EVOLUTION OF UNIDIRECTIONAL SOLIDIFI-CATION MICROSTRUCTURE OF THE Al-In MONOTECTIC ALLOYS IN HIGH TEMPERATURE GRADIENT. Acta Metall Sin, 2004, 40(12): 1253-1256 .
|
Abstract High temperature gradient are employed under the directional condition
to examine the influence of the ratio of gradient and solidification
rate, G/R, on the microstructure of Al-17.5%In
(mass fraction) alloys. The experimental results show that the
microstructure evolution of monotectic alloy under the directional
solidification is similar to the one of eutectic alloy. When steady
growth formed, there exists an In-rich zone in the front of α phase
and vice versa. The diffusion process plays a dominate role in the steady
growth due to the small lamella distance. Unidirectional solidification
microstructure of the alloys changes from fibrous structure to
regular droplet-like array and finally random dispersion of In droplets in
the aluminum matrix with increasing growth rate or decreasing temperature
gradient. The change suggests that the transition of monotectic
solidification structure has a closed relation to the morphological
transition of solid-liquid interface.
|
Received: 28 December 2003
|
|
[1] Xie H, Wang J C, Fan J F, Hao W X, Yang G C. Hot Work Technol, 2003; (4): 49 (谢辉,王锦程,樊建锋,郝维新,杨根仓.热加工工艺,2003; (4):49) [2] Liu Y, Guo J J, Jia J. Foundry, 2000; 49(1):1 (刘源,郭景杰,贾均.铸造,2000;49(1):1) [3] Xian A P, Zhang X M, Li Z Y, Liu Q Q, Chen J Z, Li Y Y. Acta Metall Sin, 1996; 32: 113 (冼爱平,张修睦,李忠玉,刘清泉,陈继志,李依依.金属学 报, 1996;32:113) [4] Hayes L J, Andrews J B. Mater Sci Forum, 2000; 329-330:209 [5] Stoker C, Ratke L. J Cryst Growth, 2000; 212: 324 [6] Stoker G, Ratke L. J Cryst Growth, 1999; 203: 582 [7] Aoi I, Makoto I, Yoshida M, Fukunagab H, Nakaea H. JCryst Growth, 2001; 222: 806 [8] Grugel N G, Lograsso T A. Metall Trans, 1984; 15A:1003 [9] Cai Y W, Li J G. Chin J Mater Res, 1995; 9; 208 (蔡英文,李建国.材料研究学报,1995;9:208) [10] Kamio A, Kumai S, Tezuka H. Mater Sci Eng, 1991; A146:105 [11] Zhang D L, Cantor B. Acta Metall Mater, 1991; 39: 1595 [12] Arikawa Y, Andrews J B, Coriell S R, Mitchell W F. In: Schiffman R A, Andrews J B, eds., 6th Int Symp on Experimental Methods for Microgravity Materials Science, at the 123rd Annual TMS Meeting, Warrendale, PA: TMS Minerals, Metals & Materials Society, 1994: 110 [13] Chadwick G A. Br J Appl Phys, 1965; 16: 1095 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|