Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (6): 827-836    DOI: 10.11900/0412.1961.2021.00170
Research paper Current Issue | Archive | Adv Search |
A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing
GUO Dongwei1,2, GUO Kunhui1,2, ZHANG Fuli1,2, ZHANG Fei1,2, CAO Jianghai1,2, HOU Zibing1,2()
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China
Cite this article: 

GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing. Acta Metall Sin, 2022, 58(6): 827-836.

Download:  HTML  PDF(1994KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-end steel products play an essential role in economic development and infrastructure projects. Nowadays, continuous casting is an important production process of high-end steel products due to higher efficiency and lower energy consumption. However, the quality and properties of end products, such as steel billets, bloom, and bar, will be affected by internal segregation defects, which are closely related to solidification structure characteristics. In the research on the solidification structure characteristics of billets, the columnar to equiaxed transition (CET) determination is of great significance to determine equiaxed crystal zones and the quality control of continuous casting billets. In this work, the secondary dendrite arm spacing (SDAS) of typical dendrites was measured and analyzed using the actual solidification structure of continuous casting billets and the mutation of SDAS during the solidification process from the billet surface to the center was found. Combined with the two-dimensional temperature field numerical model of the billet cross section, it can be seen that the CET will affect the heat transfer process in the billet and this will be reflected as the mutation of SDAS in typical dendrites. This work proposed a new method for the quantitative determination of CET in the continuous casting billets based on this mutation, and the starting position of the maximum SDAS increase rate is determined as the starting position of the CET. The CET positions calculated using the new method correspond to changes in the thermal gradient and growth rate in the billet, and are consistent with the positions of the actual solidification structure morphology transformations, which prove the effectiveness of this method.

Key words:  continuous casting billet      solidification structure      dendrite arm spacing      columnar to equiaxed transition      segregation     
Received:  21 April 2021     
ZTFLH:  TF701.3  
Fund: United Funds between National Natural Science Foundation and Baowu Steel Group Corporation Limited of China(U1860101)
About author:  HOU Zibing, associate professor, Tel: 13628489073, E-mail: houzibing@cqu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00170     OR     https://www.ams.org.cn/EN/Y2022/V58/I6/827

Fig.1  Schematic of sampling method for cross section of the selected continuous casting billets
BilletSuperheatCasting speedSpecific water
No.oCm·min-1amount / (L·kg-1)
1421.80.68
2402.10.68
Table 1  Production parameters of selected SCM440 continuous casting billet
Fig.2  Schematic of measurement position of secondary dendrite arm spacing (SDAS) in cross section of selected continuous casting billets
SectionLengthWater amountBoundary conditionComputational formula
mm3·h-1
No.1No.2
Mold0.9114114qmqm=2.68-βtm × 103
Foot roller section0.54.165.19qf = hf(Tb - Tf)hf = 153.6(w / 60)0.351
First section of secondary cooling zone2.76.698.24qk = hk(Tb - Tw)hk = 160 + 8.35w0.851
Second section of secondary cooling zone2.92.082.48qk = hk(Tb - Tw)hk = 200 + 10.44w0.851
Third section of secondary cooling zone3.51.632.04qk = hk(Tb - Tw)hk = 200 + 10.44w0.851
Air cooling zone5.4--qa = ɛσ(Tb4 - Ta4)ε = 0.8
Table 2  Parameters and relevant computational formulas at different sections in the calculation of temperature field[18-20]
Temperature measuring point No.

Distance from the meniscus

m

Measured surface center temperature / oCCalculated surface center temperature / oC
111.6710261002.23
213.65998979.00
326.90823793.20
428.90776754.32
Table 3  Comparison of temperature measurement results and numerical simulation results of temperature field at the center of right surface of billet No.1
Fig.3  SDAS changes on the cross section of the billets No.1 (a, c, e) and No.2 (b, d, f)
(a, b) near inner arc side (c, d) centerline (e, f) near outer arc side
Fig.4  Thermal gradient changes on the left centerline of billets No.1 (a) and No.2 (b) (Insets show the high magnified images)
Fig.5  Growth rate changes of solidification structure on the left centerline of billets No.1 (a) and No.2 (b) (CET—columnar to equiaxed transition)
Fig.6  Typical morphological changes of the solidified structure from the surface to the center of the billet
Fig.7  Schematic of billet CET determination based on the SDAS change (dSi —SDAS of typical dendrite)
Billet No.SideMeasured CET position / mmAverage
Near inner arcCenterlineNear outer arc
mm
1Left30.1232.3331.1330.82
Right29.2531.3230.74
2Left29.2728.5828.0328.71
Right28.9828.9928.40
Table 4  Measurement results of the CET position on the cross section of billets No.1 and No.2
Fig.8  Calculated CET positions of actual billets No.1 (a) and No.2 (b)
1 Lage M G, Da Costa e Silva A L V. Evaluating segregation in HSLA steels using computational thermodynamics [J]. J. Mater. Res. Technol., 2015, 4: 353
doi: 10.1016/j.jmrt.2015.06.002
2 Long M J, Chen D F. Study on mitigating center macro-segregation during steel continuous casting process [J]. Steel Res. Int., 2011, 82: 847
doi: 10.1002/srin.201100085
3 Ayata K, Mori T, Fujimoto T, et al. Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring [J]. Trans. Iron Steel Inst. Jpn., 1984, 24: 931
doi: 10.2355/isijinternational1966.24.931
4 Li P S, Lu J H, Qiu S T, et al. Control of equiaxed crystal ratio of high carbon steel billets by circular seam cooling nozzle [J]. J. Iron Steel Res. Int., 2011, 18: 24
5 Ludlow V, Normanton A, Anderson A, et al. Strategy to minimise central segregation in high carbon steel grades during billet casting [J]. Ironmak. Steelmak., 2005, 32: 68
doi: 10.1179/174328105X23978
6 Jiang D, Zhu M. Solidification structure and macrosegregation of billet continuous casting process with dual electromagnetic stirrings in mold and final stage of solidification: A numerical study [J]. Metall. Mater. Trans., 2016, 47B: 3446
7 Choudhary S K, Ganguly S. Morphology and segregation in continuously cast high carbon steel billets [J]. Trans. Iron Steel Inst. Jpn., 2007, 47: 1759
8 Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
9 Shibata H, Itoyama S, Kishimoto Y, et al. Prediction of equiaxed crystal ratio in continuously cast steel slab by simplified columnar-to-equiaxed transition model [J]. ISIJ Int., 2006, 46: 921
doi: 10.2355/isijinternational.46.921
10 Niu L, Qiu S T, Zhao J X, et al. Processing parameter optimization for continuous casting of 38CrMoAl round bloom based on a prediction model of the equiaxed crystal ratio [J]. Ironmak. Steelmak., 2019, 46: 835
doi: 10.1080/03019233.2018.1518807
11 Luo S, Zhu M Y, Louhenkilpi S. Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method [J]. ISIJ Int., 2012, 52: 823
doi: 10.2355/isijinternational.52.823
12 Hou Z B, Jiang F, Cheng G G. Solidification structure and compactness degree of central equiaxed grain zone in continuous casting billet using cellular automaton-finite element method [J]. ISIJ Int., 2012, 52: 1301
doi: 10.2355/isijinternational.52.1301
13 Biscuola V B, Martorano M A. Mechanical blocking mechanism for the columnar to equiaxed transition [J]. Metall. Mater. Trans., 2008, 39A: 2885
14 Zuo P F, Chen S Y, Wei M W, et al. Thermal behavior and grain evolution of 24CrNiMoY alloy steel prepared by pre-laid laser cladding technology [J]. Opt. Laser Technol., 2019, 119: 105613
doi: 10.1016/j.optlastec.2019.105613
15 Zhang K L, Li Y J, Yang Y S. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169 [J]. J. Mater. Sci. Technol., 2020, 48: 9
doi: 10.1016/j.jmst.2020.02.009
16 Hou Z B, Guo Z A, Guo D W, et al. A new method for carbon content distribution based on grayscale image of casting blank macrostructure in carbon steel [J]. J. Iron Steel Res., 2019, 31: 620
侯自兵, 郭中傲, 郭东伟 等. 利用碳钢铸坯组织灰度图获取C含量分布的方法 [J]. 钢铁研究学报, 2019, 31: 620
17 Cao J H, Hou Z B, Guo Z, et al. An application of fractal theory to complex macrostructure: quantitatively characterization of segregation morphology [J]. ISIJ Int., 2020, 60: 1188
doi: 10.2355/isijinternational.ISIJINT-2019-630
18 Wang W, Hou Z B, Chang Y, et al. Effect of superheat on quality of central equiaxed grain zone of continuously cast bearing steel billet based on two-dimensional segregation ratio [J]. J. Iron Steel Res. Int., 2018, 25: 9
19 Choudhary S K, Mazumdar D. Mathematical modelling of fluid flow, heat transfer and solidification phenomena in continuous casting of steel [J]. Steel Res. Int., 1995, 66: 199
20 Cai K K, Yang J C. Investigation of heat transfer in the spray cooling of continuous casting [J]. J. Univ. Sci. Technol. Beijing, 1989, 11: 509
21 Li B, Zhang Z H, Liu H S, et al. Characteristics and evolution of the spot segregations and banded defects in high strength corrosion resistant tube steel [J]. Acta Metall. Sin., 2019, 55: 762
李 博, 张忠铧, 刘华松 等. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变 [J]. 金属学报, 2019, 55: 762
22 Ji Y, Tang H Y, Lan P, et al. Effect of dendritic morphology and central segregation of billet castings on the microstructure and mechanical property of hot‐rolled wire rods [J]. Steel Res. Int., 2017, 88: 1600426
doi: 10.1002/srin.201600426
23 Min Y, Liu C J, Wang D Y, et al. Prediction of equiaxed crystal ratio of continuous casting round billet of 37Mn5 steel [J]. J. Iron Steel Res., 2011, 23(10): 38
闵 义, 刘承军, 王德永 等. 37Mn5连铸圆坯中心等轴晶率预测 [J]. 钢铁研究学报, 2011, 23(10): 38
24 Esaka H, Wakabayashi T, Shinozuka K, et al. Origin of equiaxed grains and their motion in the liquid phase [J]. ISIJ Int., 2003, 43: 1415
doi: 10.2355/isijinternational.43.1415
25 Li J M, Jiang M F, Ning J X, et al. Effect of casting speed on dendrite arm spacing of Mn13 steel continuous casting slab [J]. J. Iron Steel Res. Int., 2020, 27: 665
26 Ziv I, Weinberg F. The columnar-to-equiaxed transition in Al 3 Pct Cu [J]. Metall. Trans., 1989, 20B: 731
27 Hu H Q. Metal Solidification Principle [M]. 2nd Ed., Beijing: Machine Industry Press, 2012: 84
胡汉起. 金属凝固原理 [M]. 第 2版, 北京: 机械工业出版社, 2012: 84
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[4] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[5] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[7] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[8] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[9] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[10] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[11] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
[12] ZHANG Yong, LI Xinxu, WEI Kang, WEI Jianhuan, WANG Tao, JIA Chonglin, LI Zhao, MA Zongqing. Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting[J]. 金属学报, 2020, 56(8): 1123-1132.
[13] GAI Yibing, TANG Fawei, HOU Chao, LU Hao, SONG Xiaoyan. First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System[J]. 金属学报, 2020, 56(7): 1036-1046.
[14] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[15] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
No Suggested Reading articles found!