Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (1): 72-76     DOI:
Research Articles Current Issue | Archive | Adv Search |
In Situ Resistance Analysis On Transformation Of Constrained Fe--Mn--Si--Cr--Ni Shape Memory Alloy
WEN Yuhua; YAN Mi; LI Ning\
State Key Laboratory of Silicon Materials; Zhejiang University
Cite this article: 

WEN Yuhua; YAN Mi; LI Ning\. In Situ Resistance Analysis On Transformation Of Constrained Fe--Mn--Si--Cr--Ni Shape Memory Alloy. Acta Metall Sin, 2004, 40(1): 72-76 .

Download:  PDF(200KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Phase transformation behavior of the constrained Fe--Mn--Si--Cr--Ni shape memory alloy has been studied in detail through measuring the resistance and the recovery stress as afunction of temperature simultaneously during heating and cooling. On cooling, the recoverystress increases with lowering temperature. At the temperature that the recovery stress isgreater than the yield strength, plastic deformation will first take place. With the further decreaseof the temperature, the ε martensite will be induced by the recovery stress at the temperature thatthe recovery stress reaches to the critical stress for stress--inducedεmartensite. Below this temperature, the recovery stress decreases with loweringtemperature. The above plastic deformation and the εmartensitic transformation induced by the recovery stress drastically relaxthe recovery stress. The recovery stress equations during heating and cooling have beenestablished respectively. The design principle of compositions for Fe--Mn--Si--Cr--Ni shape memory alloys pip couplings has been put forward.
Key words:  Fe base shape memory alloy      resistance      
Received:  18 December 2002     
ZTFLH:  TG139.6  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I1/72

[1] Yang J H, Chen H, Wayman C M. Metall Trans, 1992; 23A: 1431
[2] Hsu T Y. J Mater Sci Technol, 1994; 40:112
[3] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1997; A238:309
[4] Wu X, Hsu T Y. Mater Charact, 2000; 45:137
[5] Kajiwara S, Liu D, Kikuchi T, Shinya N. Scr Mater, 2001; 44:2809
[6] Wen Y H, Li N, Tu M J. Scr Mater, 2001; 44:1113
[7] Tian S. Materials Physical Properties. Beijing: Aeronautics and Astronautics University Press, 2001:79(田莳.材料物理性能.北京:北京航空航天大学出版社,2001:33)
[8] Wen Y H, Li N, Tu M J. J Mater Sci Technol, 2000; 16: 537
[9] Sun B N, Hong T, Yang L X. Engineerig Plastoelasticity. Hangzhou: Zhejiang University Press, 1998:20(孙炳南,洪滔,杨骊先.工程弹塑性力学.杭州:浙江大学出版社,1998:20)
[10] Li N. PhD Dissertation, Sichuan University, Chengdu, 2000(李宁.四川大学博士学位论文,成都,2000)
[11] Miyazaki S, Matsuda S. Trans ISIJ, 1989; 29:353
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[3] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[4] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[5] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[6] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[7] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[8] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] LI Tianxin, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials[J]. 金属学报, 2021, 57(1): 42-54.
[11] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[12] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[13] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[14] ZHANG Yu, LOU Liyan, XU Qinglong, LI Yan, LI Changjiu, LI Chengxin. Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding[J]. 金属学报, 2020, 56(11): 1530-1540.
[15] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
No Suggested Reading articles found!