Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (4): 443-448    DOI:
Current Issue | Archive | Adv Search |
THE INTERFACE MICROSTRUCTURE OF A B_4C_p +SiC_w/MB15 MAGNESIUM BASED COMPOSITE
WU Zhengan; GU Mingyuan; CHEN Yu; ZHANG Gooding (The State Key Laboratory of MMCs; Shanghai Jiaotong University; Shanghai 200030)
Cite this article: 

WU Zhengan; GU Mingyuan; CHEN Yu; ZHANG Gooding (The State Key Laboratory of MMCs; Shanghai Jiaotong University; Shanghai 200030). THE INTERFACE MICROSTRUCTURE OF A B_4C_p +SiC_w/MB15 MAGNESIUM BASED COMPOSITE. Acta Metall Sin, 1998, 34(4): 443-448.

Download:  PDF(2878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The magnesium alloy (MB15) matrix composites reinforced by the hybrid ofthe boron carbide particle and the silicon carbide whisker were fabricated with vacuum pressure infiltration and hot extrusion techniques. The interface microstructure of the composite has been studied using analytical electron microscope (equipped with EDS, EELS). Experimental results showed that the chemical reaction 4Mg(1)+B2O3(1)=MgB2(s)+3MgO(s) took place during infiltration, and produced magnesium diboride (MgB2) phase and MgO microcrystallites. Due to this interface reaction, liquid magnesium wetted boron carbide particle. Moreover, the surface of boron carbide particle had a serrated periphery, thus a strong interfacial bonding was formed,which resulted in excellent mechanical properties of the composite. Because of the flowabilityof boron chide, the same interfacial reaction also took place at the SiCw/Mg interface region,where the SiC whisker is near a boron carbide particle. When the SiC whisker is far from a boroncarbide particle, the SiCw/Mg interface is straight with β' (MgZn2) precipitates on it.
Key words:  boron carbide      silicon carbide whisker      magnesium based composite      interface      microstructure     
Received:  18 April 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I4/443

1 猪濑康之,金子纯一,营又信.轻金属,1990;40:221(Inose Y, Kaneko J, Sugamata M. J Jpn Inst Light Met, 1990; 40: 221)
2 Badini C, Marino F, Montorsi M, Guo X B. Mater Sci Eng, 1992; A157: 53
3 吴桢干, 顾明元, 张国定. 无机材料学报, 1997; 12: 370(WU Zhengan, GU mingyuan, ZHANG Guoding. J Inorp Mater, 1997; 12. 370)
4 Ahn C C, Krivanek O L. EELS Atlas, 1983: 5
5 JCPDS Card, No. 35-798
6 JCPDS Card, No. 38-1369
7 Nishiyama K, Ogawa T, Takagi K. J Jpn Soc PowdeT Powder Metall, 1994; 41: 156
8 Inem B, Pollard G. J Matcr Sci, 1993; 28: 4427
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!