Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (11): 1173-1177    DOI:
Current Issue | Archive | Adv Search |
SUPERPLASTICITY BEHAVIORS OF THERMALLY DEFORMED TiAl BASED ALLOYS
HUANG Baiyun;HE Yuehui;DENG Zhongyong;WANG Jiannong (State Key Laboratory for Powder Metallurgy;Central South University of Technology; Changsha 410083)SUN Jiang (Department of Materials Science;Shanghai Jiaotong University;Shanghai 200030)
Cite this article: 

HUANG Baiyun;HE Yuehui;DENG Zhongyong;WANG Jiannong (State Key Laboratory for Powder Metallurgy;Central South University of Technology; Changsha 410083)SUN Jiang (Department of Materials Science;Shanghai Jiaotong University;Shanghai 200030). SUPERPLASTICITY BEHAVIORS OF THERMALLY DEFORMED TiAl BASED ALLOYS. Acta Metall Sin, 1998, 34(11): 1173-1177.

Download:  PDF(1648KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Superplasticity behaviors under the conditions of a temperature range from 1000℃ to 1075℃ and strain rates varlying from 1×10-6 to 8×10-3 s-1 were investigated for Ti-33Al-3Cr alloy with 1 μm grain size obtained by multi-step thermal mechanical treatment. Test results show that this TiAl alloy possesses good superplasticity. It exhibits a strain rate sensitivity coefficient of 0.9 at the strain rate of 3×10-4 s-1 and temperatures from 1000℃ to 1075℃. Tensile elongation of 517% was obtained at the temperature of 1075℃ and the strain rate of 8×10-5 s-1. Test results also show that this alloy has a low thermal activation energy of about 250 kJ/mol. Superplasticity behavior obtained from this fine-grained TiAl is due to dynamic recrystallization during tensile deformation.
Key words:  TiAl based alloy      superplasticity      microstructure      hot deformation     
Received:  18 November 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I11/1173

1ImayevR M,Kaibyshev O A,Salishchev G A.Acta Metall Mater,1992;3:581
2Clemens H.Intermetallics,1994;2:179
3Lee W B, Yang H S,Kim Y W,Mukherjee A K. Scr Metall Mater 1993;29:1403
4时富正治. 金属技术,1992,6(10):70(Minotoki K. Met Technol,1992;62(10):70)
5黄伯云,贺跃辉.中国有色金属学报,1996; 6:55(Huang B Y,He Y H.Trans Nonfrrous Met Soc China,1996;6:55)
6贺跃辉,黄伯云.中南工业大学学报,1997;4:344(He Y H,Huang B Y.J cent South Univ Technol,1997;4:344)
7贺跃辉.中国有色金属学报,1996;6:96(He Y H.Trans Nonferrous Met Soc China,1996;6(3):96)
8贺跃辉,黄伯云.稀有金属,1997;(2):109(He Y H, Huang B Y Rear Met, 1997;(2):109)|
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!