Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (12): 1239-1245    DOI:
论文 Current Issue | Archive | Adv Search |
LOW CYCLE FATIGUE BEHAVIOR OF A DZX40M DIRECTIONALLY SOLIDIFIED Co-BASED SUPERALLOY──Ⅰ.Fatigue and Its Mechanism at Room Temperature
LU Zheng; ZHOU Huihua; XU Yongbo; HU Zhuannqi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)
Cite this article: 

LU Zheng; ZHOU Huihua; XU Yongbo; HU Zhuannqi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). LOW CYCLE FATIGUE BEHAVIOR OF A DZX40M DIRECTIONALLY SOLIDIFIED Co-BASED SUPERALLOY──Ⅰ.Fatigue and Its Mechanism at Room Temperature. Acta Metall Sin, 1997, 33(12): 1239-1245.

Download:  PDF(1830KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low cycle fatigue behavior of a DZX40M directionally solidified Co-based superalloy has been investigated at room temperature in air under different total strain amplitudes ranging from 2.5 × 10(-3) to 6.0 × 10(-3). The results show that the cyclic hardening of the alloy appears at the first few cycles in the initial hardening stage, and then the saturation stage which is the major part of the whole fatigue life begins. Examination by TEM indicates that the initial hardening of the alloy is caused by the pile-up of the stacking faults at the intersection of stacking fault, while the saturation of the alloy during low cycle fatigue is arising from the transition of the stacking fault on the (111) to the closely spaced stacking fault ribbon on the (111).

Key words:  Co-based superalloy      fatigue stacking fault      stacking fault     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I12/1239

1Thomas S, William H. The Superalloys. New York: Wlley, 1972: 45
2Davin A. Cobalt, 1974; 21: 32
3Howie A,Whelan M J.Proc R Soc London,1962:A267:206
4Gevers R, Art A, Amelinckx S. Phys Status Solidi, 1963; 3: 1563
5郭可信,叶恒强,吴玉琨,电子衍射图在晶体学中的应用,北京:科学出版社,1983:408
6Rajan K. Scr Metall, 1983; 17: 101
7Cohen J,B,Weertman J.Acta Metall,1963;11:996
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[4] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[5] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[6] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[7] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[8] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[9] PU Sheng, WANG Li, XIE Guang, DING Xianfei, LOU Langhong, FENG Qiang. EFFECT OF NOTCH ORIENTATION AND LOCAL RECRYSTALLIZATION ON THERMAL FATIGUE PROPERTIES OF A DIREC- TIONALLY SOLIDIFIED Co-BASED SUPERALLOY[J]. 金属学报, 2015, 51(4): 449-457.
[10] Yong SU,Sugui TIAN,Huichen YU,Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES[J]. 金属学报, 2015, 51(12): 1472-1480.
[11] AN Xianghai, WU Shiding, ZHANG Zhefeng. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS[J]. 金属学报, 2014, 50(2): 191-201.
[12] XUE Peng, XIAO Bolü, MA Zongyi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS[J]. 金属学报, 2014, 50(2): 245-251.
[13] DENG Liping, YANG Xiaofang, HAN Ke, SUN Zeyuan, LIU Qing. STUDY ON THE MICROSTRUCTURE EVOLUTION OF Cu-Nb COMPOSITE WIRES DURING DEFORMATION AND ANNEALING[J]. 金属学报, 2014, 50(2): 231-237.
[14] XIAO Hongxing, LONG Chongsheng, CHEN Le, LIANG Bo. COMPRESSIVE CREEP BEHAVIOR OF REACTOR CONTROL ROD MATERIAL Ag-In-Cd ALLOY[J]. 金属学报, 2013, 49(8): 1012-1016.
[15] XU Ling, CHU Zhaokuang, CUI Chuanyong, GU Yuefeng, SUN Xiaofeng. CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY[J]. 金属学报, 2013, 49(7): 863-870.
No Suggested Reading articles found!