COMPRESSIVE CREEP BEHAVIOR OF REACTOR CONTROL ROD MATERIAL Ag-In-Cd ALLOY
XIAO Hongxing, LONG Chongsheng, CHEN Le, LIANG Bo
Science and Technology on Reactor Fuel and Materials Laboratory, NuclearPower Institute of China, Chengdu 610041
Cite this article:
XIAO Hongxing, LONG Chongsheng, CHEN Le, LIANG Bo. COMPRESSIVE CREEP BEHAVIOR OF REACTOR CONTROL ROD MATERIAL Ag-In-Cd ALLOY. Acta Metall Sin, 2013, 49(8): 1012-1016.
Ag-In-Cd alloy is widely used as the control rod material in the pressure water reactor (PWR),so it is very important to research the compressive creep behavior for understanding the mechanical property of control rod materials in pile. The compressive creep behavior of as-cast Ag-In-Cd alloy was investigated using a special apparatus at 300—400℃ and under compressive stresses in the range of 12—24 MPa in this work. The stress exponent n and apparent activation energy Qa of the creep process have been calculated as well as the mechanisms of compressive creep behavior have been discussed. The results show that the compressive creep of the alloy increases with the increase of temperature and compressive stress. The relationship between steady creep rate and stress can be expressed in a power law form. The stress exponent n are 2.90, 4.09 and 5.77 at 300, 350 and 400℃ respectively. The apparent activation energy Qa of the creep process are 68.1, 103.7 and 131.6 kJ/mol under compressive stresses of 12, 18 and 24 MPa respectively. Stacking fault is the primary rate controlling mechanism for the Ag-In-Cd alloy at 300—400℃ and the compressive stress range of 12—24 MPa, which was deduced from TEM observation.
[2] Xue S J, Chen Y, Qiu S Y. Nucl Power Eng, 2004; 25: 522
(薛淑娟, 陈勇, 邱绍宇. 核动力工程, 2004; 25: 522)
[3] Devan K, Riyas A, Alagan M, Mohanakrishnan P. Ann Nucl Energy, 2008; 35: 1484
[4] Sepold L, Lind T, Pinter C A, Stegmaier U, Steinbruck M,
Stuckert J. Ann Nucl Energy, 2009; 36: 1349
[5] Amir H F, Saeed S. Prog Nucl Energy, 2009; 51: 184
[6] Mousavi S S A, Aghanajafi C, Sadoughi S, Sharifloo N. Ann Nucl Energy,2010; 37: 1659
[7] Dubourg R, Austregesilo H, Bals C, Barrachin M. Prog Nucl Energy, 2010; 52: 97
[8] Tian S G, Zhang J H, Jin T, Yang H C, Xu Y B, Hu Z Q. Acta Metall Sin, 1999; 35: 392
(田素贵, 张静华, 金涛, 杨洪才, 徐永波, 胡壮麒. 金属学报, 1999; 35: 392)
[9] Sha Y H, Zuo L, Zhang J H, Xu Y B, Hu Z Q. Acta Metall Sin, 2011; 37: 1142
(沙玉辉, 左良, 张静华, 徐永波, 胡壮麒. 金属学报, 2011; 37: 1142)
[10] Wei S H, Chen Y G, Tang Y B. Liu H M, Xiao S F, Niu G, Zhang X P, Zhao Y H. Mater Sci Eng, 2008; A492: 20
[11] Huang C, Yu X H, Yamabe M Y, Nakazawa S, Harada H. Mater Lett, 2003; 57: 3371
[12] Wei S H, Chen Y G, Tang Y B, Liu M, Xiao S F, Zhang X P, Zhao Y H. Trans Nonferrous Met Soc, 2008; 18: 214
[13] Wei X W, Shen B L. Mater Sci Technol, 2004; 12: 642
(魏晓伟, 沈保罗. 材料科学与工艺, 2004; 12: 642)
[14] Ren W L, Guo J T, Zhou J Y. Acta Metall Sin, 2002; 38: 908
(任维丽, 郭建亭, 周继扬. 金属学报, 2002; 38: 908)
[15] Fu X W, Yang W L, Zhang L Q. Acta Metall Sin, 2002; 38: 731
(傅晓伟, 杨王朗, 张来启. 金属学报, 2002; 38: 731)
[16] Pekguleryuz M O, Kaya A A. Adv Eng Mater, 2003; 5: 866
[17] Zeng M, Xu D F, Shen B L. Mater Heat Treat, 2008; 37: 17
(曾明, 徐道芬, 沈保罗. 材料热处理技术, 2008; 37: 17)
[18] Liu X Y, Pan Q L, Lu Z L, Cao S F, He Y B, Li W B. Acta Metall Sin, 2011; 47: 53
(刘晓艳, 潘清林, 陆智伦, 曹素芳, 何运斌, 李文斌. 金属学报, 2011; 47: 53)
[19] Xu C M. Guo J T. Acta Metall Sin, 2003; 39: 809
(徐春梅, 郭建亭. 金属学报, 2003; 39: 809)
[20] Weetman J. J Appl Phys, 1957; 28: 362
[21] Coble R L. J Appl Phys, 1963; 34: 1679
[22] Sherby O D, Burke P M. Prog Mater Sci, 1968; 13: 325
[23] Cannon W R, Sherby O D. Metall Trans, 1970; 1: 1030
[24] Luo A A. Int Mater Rev, 2004; 49: 13
[25] Yan J L, Sun Y S, Xue F. Acta Metall Sin, 2008; 44: 1354
(晏井利, 孙扬善, 薛烽. 金属学报, 2008; 44: 1354)
[26] Wei S H, Chen Y G, Tang Y B, Zhang X P, Liu M, Xiao S F, Zhao Y H. Mater Sci Eng, 2009; A508: 59