Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (9): 92-96    DOI:
Current Issue | Archive | Adv Search |
X-RAY DIFFRACTION DETERMINATION OF STRESS RELAX IN LASER MELTED AREA OF STAINLESS STEEL
XU Jingyang;VAN BRUSSEL;B J;NOORDHUIS J;BRONSVELD P M;DE HOSSON J Th M Shanghai Institute of Metallurgy; Academia Sinica Department of Applied Physics; Materials Science Center; University of Groningen; The Netherlands
Cite this article: 

XU Jingyang;VAN BRUSSEL;B J;NOORDHUIS J;BRONSVELD P M;DE HOSSON J Th M Shanghai Institute of Metallurgy; Academia Sinica Department of Applied Physics; Materials Science Center; University of Groningen; The Netherlands. X-RAY DIFFRACTION DETERMINATION OF STRESS RELAX IN LASER MELTED AREA OF STAINLESS STEEL. Acta Metall Sin, 1993, 29(9): 92-96.

Download:  PDF(371KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Laser surface melting of AISI 304 stainless steel has frequently beneficial effecton surface modification due to the high quench rate by self conduction of heat as quenching,and has a disadvantage that a considerable amount of tensile stress was introduced.It could berelaxed by neon implantation. Principle and method for measuring the stress relax in 0.1 μmthick surface layer were explained in detail for showing the Ne effect on it.
Key words:  X-ray diffraction      stress relax      ion implantation      laser melting     
Received:  18 September 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I9/92

1 De Beurs H, Hovius J A, De Hosson J Th M. Acta Metall, 1988; 36: 3123
2 Xu J Y(徐景阳), Van Brussel B J, Bronsveld P M, De Hosson J Th M. Surf Coat Technol. 1991; 45: 43
3 Perry A J, Chollet L. J Vac Sci Technol, 1986; 4A: 2801
4 徐景阳, Van Brussel B J, Noordhuis J, Bronsveld P M, De Hosson J Th M. 金属学报, 1993; 29: B88
5 Simmons R O, Balluffi R W. Phys Rev, 1962; 125: 862
6 Gaber A, Ehrhart P. Radiat Eff 1983; 78: 213
7 Xu J Y(徐景阳), Van Brussel B J, Noodhuis J, Bronsveld P M, De Hosson J Th M. Proc Surf Eng Conf Toronto, 1990: 167
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[3] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[4] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[5] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[6] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[7] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[8] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[9] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[10] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[11] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[12] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[13] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[15] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
No Suggested Reading articles found!