Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (3): 10-14    DOI:
Current Issue | Archive | Adv Search |
MECHANISM FOR DIFFUSION OF BORON IN γ-Fe
YU Zongsen;CHEN Ning University of Science and Technology Beijing
Cite this article: 

YU Zongsen;CHEN Ning University of Science and Technology Beijing. MECHANISM FOR DIFFUSION OF BORON IN γ-Fe. Acta Metall Sin, 1992, 28(3): 10-14.

Download:  PDF(475KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Mechanism for diffusion of B in γ--Fe is believed to be mainly by means ofboron-vacancy complexes other than as interstitial atoms previously. This was made of calcula-tion on the basis of theoretical model proposed by the authors. The calculated diffusioncoefficient of B in γ--Fe after this mechanism is consistent with the experimental value. In addi-tion, this is also supported by the non--equilibrium segregation phenomenon of B at grainboundaries of γ--Fe and the lattice constant measurement of Fe--B alloy.
Key words:  boron      vacancy      diffusion      non-equilibrium segregation     
Received:  18 March 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I3/10

1 Busby P E, Warga M E, Wells C. Trans AIME, 1953; 197: 1463
2 Schuman H. Metallurgie Giessereitechnik, 1954; 4: 305
3 Grange R A, In: Grange R A, Shortsleeve F J, Hilty D C, Binder W O, et al. eds., Boron, Calcium, Columbium and Zirconium in Iron and Steel. New York: John Wiley & Sons, 1957: 11
4 Goldhoff R M. J Met, 1957; 10: 1278
5 Williams T M, Stoneham A M, Harries D R. Met Sci, 1976; 10: 14
6 Chapman M A V, Faulkner R G. Acta Metall 1983; 31: 677
7 Shewmon P G. Diffusion in Solide. New York: McGraw-Hill, 1990: 115
8 贺信莱,褚幼义,张秀林,余宗森,李秋萍,尹熙光.金属学报,1977;13:235
9 Karlsson L, Norden H, Odelius H. Acta Metall, 1988; 36: 1--12. Karlsson L. Acta Metall, 1988; 36: 13--34. Karlsson L, Norden H. Acta Metall, 1988; 36: 35--48
10 Hashimoto M, Ishida Y, Yamamoto R, Doyama M. Acta Metall, 1984; 32: 1
11 Johnson R A. J Phys F: Metal Physics, 1973; 3: 295
12 Seibel G, Acod C R. Acad Sci Paris, 1963; 256: 4661
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[3] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[8] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[9] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[10] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[11] LI Juan, ZHAO Honglong, ZHOU Nian, ZHANG Yingzhe, QIN Qingdong, SU Xiangdong. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel[J]. 金属学报, 2021, 57(12): 1567-1578.
[12] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[13] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
[14] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[15] DING Wen, WANG Xiaojing, LIU Ning, QIN Liang. Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy[J]. 金属学报, 2020, 56(8): 1084-1090.
No Suggested Reading articles found!