Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (3): 15-20    DOI:
Current Issue | Archive | Adv Search |
MECHANISMS AND PREDICTION OF FRACTURE TOUGHNESS ANISOTROPY OF HIGH STRENGTH Al ALLOYS
LI Huanxi;CHEN Changqi Beijing University of Aeronautics and Astronautics
Cite this article: 

LI Huanxi;CHEN Changqi Beijing University of Aeronautics and Astronautics. MECHANISMS AND PREDICTION OF FRACTURE TOUGHNESS ANISOTROPY OF HIGH STRENGTH Al ALLOYS. Acta Metall Sin, 1992, 28(3): 15-20.

Download:  PDF(1160KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Contributions of weak grain boundary, cracking path deflection and grainboundary delamination to fracture toughness anisotropy of high strength Al alloys were evalu-ated based upon approaches of fracture mechanics and in conjunction with physical crackingmechanisms. The predicted results are close to those experimentally determined in the literatureand in this work. The strong anisotropy of fracture toughness of high strength Al alloys istherefore attributed mainly to weak grain boundary cracking, cracking path deflection and grainboundary delamination. With the methods of this work, short--transverse fracture toughnessvalues of some semi-products can be estimated from in--plane toughness values and corre-sponding fracture characteristics when it is difficult to be determined experimentally.
Key words:  Al alloy      fracture toughness      anisotropy      mechanism      prediction     
Received:  18 March 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I3/15

1 Chen C Q, Li H X. Mater Sci Technol, 1987; 3: 125
2 Vasudevan A K, Doherty R D. Acta Metall, 1987; 35: 1193
3 Li H X, Chen C Q. Mater Sci Technol, 1990; 6: 850
4 Venkateswara Rao K T, Ritchie R O. Mater Sci Technol, 1989; 5: 882
5 Venkateswara Rao K T, Yu Weikang, Ritchie R O. Metall Trans, 1989; 20A: 485
6 Hahn G T, Rosenfield A R. ASTM STP 432, 1984; 1: 5
7 Smith A F. In: Sanders T H Jr., Starke E A Jr. eds., aluminum-Lithium Alloys, Vol. Ⅲ, Proc 5th Int Aluminum-Lithium Conf, Williamsburg, Virginia, March 27-31, 1989, Birmingham: Materials and Component Engineering, 1989: 1587
8 Кудряшов В Г,Смоленцев В И著,高云震等译.合金断裂韧性.北京:冶金工业出版社,1980
9 Hertsberg R W. Deformation and Fracture Mechanics of Engineering Materials. New York: Wiley, 1976
10 Petrovic J J, Mendiratta M G. J Am Ceram Soc, 1977; 60: 463
11 Faber K T, Evans A G. Acta Metall, 1983; 31: 565
12 Chan K S, Hack J E, Leverant G R. Metall Trans, 1986; 17A: 1739
13 Knorr D B. Metall Trans, 1988; 19A: 1009
14 Chan K S. Metall Trans, 1989; 20A: 155
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[10] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[11] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[12] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[13] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[14] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[15] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
No Suggested Reading articles found!