Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (4): 54-61    DOI:
Current Issue | Archive | Adv Search |
CRYOGENIC MECHANICAL BEHAVIOUR OF MARAGING STEEL CONTAINING HYDROGEN
LIU Zhonghao;CHEN Lian Institute of Metal Research; Academia Sinica; Shenyang research assistant;Institute of Metal Research;Academia Sinica; Shenyang 110015
Cite this article: 

LIU Zhonghao;CHEN Lian Institute of Metal Research; Academia Sinica; Shenyang research assistant;Institute of Metal Research;Academia Sinica; Shenyang 110015. CRYOGENIC MECHANICAL BEHAVIOUR OF MARAGING STEEL CONTAINING HYDROGEN. Acta Metall Sin, 1990, 26(4): 54-61.

Download:  PDF(1779KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Within the range of 77 to 295 K, the strength and plasticity of 18Nimaraging steel containing hydrogen increase with the decreasing temperature anddecrease with the increasing hydrogen content. The susceptibility to hydrogen em-brittlement of the maraged specimens is superior to solid solution treated ones evendown to 77K. The dislocations after plastically deformed will be tangled into cellswhich reduce themself in size as decreasing temperature and coarsen as increasinghydrogen concentration. No cryogenic deformation twin was found. The tensile frac-ture surfaces of the solution and maraged specimens containing 5.90 ppm hydrogenunder 295--223 K are revealed as quasi-cleavage and intergranular features respec-tively and as transgranular one at all under other experimental conditions. Theinfluence of hydrogen on the mechanical behaviour of steel and the mechanism ifhydrogen induced deformation and fracture were also discussed.
Key words:  resistance to hydrogen embrittlement      cryogenic property      fracture      maraging steel     
Received:  18 April 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I4/54

1 Salmon P H, Birkle A J, Reisdorf B G, Pellissier G E. ASM Trans. 1967; 60: 125
2 河部義邦,金尾正雄,中沢兴三,宗木政一.铁钢,1974;60:269
3 浅山行昭.日本金属学会志,1980;44:963
4 Patterson R L, Wayman C M. Actu Metall, 1966; 14: 347
5 Ellina Lunaska. In: Oriani R A, Hirth J P, Smialowski M eds., Hydrogen Degradation of Ferrous Alloys, The Metallurgical Society of AIME, 1985: 321
6 Oriani R A. Ann Rev Mater Sci, 1978; 8: 327
7 Stroh A N. Philos Mag, 1958; 3: 597
8 Cottrell A H. Trans Am Soc, AIME, 1958; 212: 192
9 冯端,王业宁,丘第荣.金属物理(上),北京:科学出版社,1963:341
[1] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[2] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[3] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[4] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[5] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[6] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[7] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[8] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[9] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[10] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[11] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[12] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[13] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[14] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[15] TAN Chaolin,ZHOU Kesong,MA Wenyou,ZENG Dechang. Research Progress of Laser Additive Manufacturing of Maraging Steels[J]. 金属学报, 2020, 56(1): 36-52.
No Suggested Reading articles found!