Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (1): 36-52    DOI: 10.11900/0412.1961.2019.00129
Overview Current Issue | Archive | Adv Search |
Research Progress of Laser Additive Manufacturing of Maraging Steels
TAN Chaolin1,2,ZHOU Kesong1,2(),MA Wenyou2,ZENG Dechang1
1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2. National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510651, China
Download:  HTML  PDF(26345KB) 
Export:  BibTeX | EndNote (RIS)      

Additive manufacture is recognized as a world-altering technology which triggered a world-wide intensive research interest. Here the research progress and application of the laser additive manufacturing maraging steel (MS) are systematically outlined. The advantages of selective laser melting (SLM) additive manufacture of MS is emphasized. The processing parameter and properties optimizations, build orientation based anisotropies, age hardening mechanism, gradient materials, and applications in die and moulds of SLM-processed MS are reviewed in detail. Achieving relative density of >99% in SLM-processed MS is effortless, owing to the wide SLM process window of MS. Mechanical properties of MS produced with optimized SLM processing parameters and post heat treatments are comparable to traditionally wrought parts. The build orientation hardly affects the property anisotropies of MS. The age hardening behaviour in MS follows Orowan bowing mechanism. MS-based gradient multi-materials (such as MS-Cu, MS-H13, etc.) with high bonding strength are fabricated by SLM, which provides a new approach to produce high-performance functionally gradient multi-materials components. Lastly, the application in conformal cooling moulds of SLM-processed MS is elucidated, and future research interests related to MS are also proposed.

Key words:  selective laser melting      maraging steel      laser parameter      gradient material      conformal cooling     
Received:  24 April 2019     
ZTFLH:  TG665  
Fund: Guangdong Academy of Sciences Projects(2019GDASYL-0502006);Guangdong Academy of Sciences Projects(2019GDASYL-0402004);Guangdong Academy of Sciences Projects(2019GD-ASYL-0402006);Guangdong Academy of Sciences Projects(2019GDASYL-0501009);Guangdong Academy of Sciences Projects(2017A070701027);Exterior Science and Technology Cooperation Programs of Guangzhou(201907010008);Guangdong Industrial Technology Research Institute (Guangzhou Research Institute of Nonferrous Metals) Project(2014B070705007)
Corresponding Authors:  Kesong ZHOU     E-mail:

Cite this article: 

TAN Chaolin,ZHOU Kesong,MA Wenyou,ZENG Dechang. Research Progress of Laser Additive Manufacturing of Maraging Steels. Acta Metall Sin, 2020, 56(1): 36-52.

URL:     OR

Fig.1  Schematic diagrams depicting the selective laser melting (SLM) system and SLM process parameters[16]
Fig.2  Typical OM (a, d) and SEM (b, c, e, f) images of microstructures taken from the horizontal (a~c) and vertical (d~f) cross-sections of SLM-processed maraging steel (MS)[43]
MachineP / Wvs / (mm·s-1)h / μmt / μmEv / (J·mm-3)Density / %Ref.
EOS M280804005040100>99[45]
EOS M290285960110406799.9[16]
Concept laser M2-60010530-99.5[38]
Concept laser M31051501253018799.2[51]
Renishaw AM250200-904060~77About 99.0[53]
Matsuura Avance-25300700120507199.8[54]
Concept laser M2180600105309599.5[55]
Table 1  Laser parameter, heat treatments and achievable properties of SLM-produced grade 300 maraging steels[16,38,45,50,51,52,53,54,55]
AF or HTedUTS / MPaYS / MPaEl / %HardnessRef.
SLM AF106590111.530 HRC[46]
840 ℃+490 ℃, 6 h99818954.552 HRC
SLM AF1165±7915±712.4±0.135~36 HRC[16]
490 ℃, 6 h2014±91967±113.3±0.153~55 HRC
840 ℃+490 ℃, 6 h1943±81882±145.6±0.152~54 HRC
SLM AF1178-7.9381 HV[49]
840 ℃+480 ℃, 6 h2164-2.5646 HV
SLM AF1290±1141214±9913.3±1.9396 HV[51,56]
480 ℃, 5 h2217±731998±321.6±0.3635 HV
SLM AF1192-835 HRC[52]
SLM AF1100105012.1About 420 HV[38]
490 ℃, 6 h180017204.5About 600 HV
SLM AF1125-10.4About 400 HV[54]
820 ℃+460 ℃, 6 h2033-5.3618 HV
SLM AFAbout 1190-About 12.5About 350 HV[57]
490 ℃, 3 hAbout 1860-About 5.6About 560 HV
SLM AF1188±10915±136.2±1.3-[58]
460 ℃, 8 h2017±581957±431.5±0.2-
600 ℃, 10 min1659±1191557±1401.6±0.1-
Wrought1000~1170760~8956~1535 HRC[56]
Wrought aged1930~20501862~20005~752 HRC[4,59]
Table 2  Post heat treatments and achievable properties of SLM-produced grade 300 maraging steels[4,16,38,46,49,51,52,54,56,57,58,59]
Fig.3  Effect of different heat treatments on the tensile strength (Rm) (a) and break elongation (At) (b)[60]
Fig.4  Effect of laser scan strategies on crystal orientations(a) X and X-Y scan[61] (b) X-Y scan[55]
SLM directionSpecimenUTS / MPaYS / MPaEl / %HardnessRef.
HorizontalSLM AF1165±7915±712.4±0.134.8 HRC[43]
(X-Y plane)SLM aged2014±91967±113.3±0.154.6 HRC[43]
VerticalSLM AF1085±19920±2411.3±0.335.7 HRC[43]
(Z-X or Z-Y)SLM aged1942±311867±222.8±0.152.9 HRC[43]
HorizontalSLM AF1100105012.1About 420 HV[38]
SLM aged180017204.5About 600 HV[38]
VerticalSLM AF1205108012.0-[38]
SLM aged185017505.1-[38]
HorizontalSLM AF1260±79768±2913.9±2.0-[55]
SLM aged2216±1561953±873.1±0.4-[55]
VerticalSLM AF1325±51825±9614.0±1.5-[55]
SLM aged2088±1901833±653.2±0.6-[55]
HorizontalSLM AF1174106915.7382 HV[60]
SLM aged1811172910.5552 HV[60]
45°SLM AF11449916.8327 HV[60]
SLM aged180217149.9558 HV[60]
VerticalSLM AF105789213.8375 HV[60]
SLM aged1816172310.1375 HV[60]
StandardWrought1000~1170760~8956~1535 HRC[56]
Wrought aged1930~20501862~20005~752 HRC[4,59]
Table 3  Effect of built directions on mechanical properties of SLM-produced grade 300 maraging steels[4,38,43,55,56,59,60]
Fig.5  Atom probe tomography (APT) analysis of the aged MS (a)[42] and APT analysis comparing precipitates in conventionally produced and laser metal deposition (LMD)-produced MS after age treatment (b)[63]
Fig.6  TEM analyses of a SLM-produced MS sample after age-hardening (a~e)[43](a) overview showing massive nanoprecipitates embedded in amorphous matrix(b) local magnification showing precipitate morphology and(c) zoom-in image taken from the given region of Fig.6b(d, e) high-resolution TEM images showing the coherent interface with elastic strain (d) and the complete coherent interface (e)


Fiber laser energy

Build volumeScan speedBuild rate
EOS M290400 W250×250×325Max. 7Max. 23
EOS M4001 kW400×400×400Max. 7Max. 30
M2 Cusing200 W or 400 W250×250×280Max. 7Max. 20
SLM250200 W or 400 W250×250×300Max. 7Max. 20
EOS M400-4400 W×4400×400×400Max. 7Max. 100
SLM 500HL400 W×2 & 1 kW×2500×280×325Max. 15Max. 70
SLM 280400 W & 1 kW280×280×350Max. 15Max. 35
Table 4  Features of different SLM machines[70,71,72]
Fig.7  Schematic diagram of SLM manufacturing of MS-Cu gradient multi-materials[73]
Fig.8  Interfacial bonding mechanism analysis of SLM-produced Cu-MS[73](a) SEM image of interfacial melt pool(b) image showing focused ion beam (FIB) extraction of a TEM sample(c) overview of TEM thin foil(d) EDX mapping of MS-Cu bonding region(e) schematics and formation mechanism of Marangoni convection in interfacial melt pool(f) TEM image of MS-Cu interface(g) HRTEM image taken from the region g in Fig.8d
Fig.9  Comparison between the SLM-produced conformal cooling and the traditional cooling moulds (a~c)[79]
Fig.10  The MS conformal cooling mould processed by SLM hybrid tooling manufacturing technique (CNC—computerized numerical control)
[1] Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
[2] Council A, Petch M. 3D Printing: Rise of the Third Industrial Revolution [M]. Gyges 3D Presents, 2014: 1
[3] Olakanmi E O, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
[4] Handbook International ASM. ASM Handbook, Vol.1: Properties and Selection: Irons, Steels, and High-Performance Alloys [M]. Ohio: ASM, 1991: 1872
[5] Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perf., 2014, 23: 1917
[6] Stampfl J, Hatzenbichler M. Additive manufacturing technologies [A]. CIRP Encyclopedia of Production Engineering [C]. Berlin, Heidelberg: Springer, 2014: 20
[7] Huang SH, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review [J]. Int. J. Adv. Manuf. Technol., 2012, 67: 1191
[8] Berman B. 3-D printing: The new industrial revolution [J]. Bus. Horiz., 2012, 55: 155
[9] Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
[9] (林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684)
[10] Gao W, Zhang Y B, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering [J]. Comput.-Aided Des., 2015, 69: 65
[11] Rashed M G, Ashraf M, Mines R A W, et al. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications [J]. Mater. Des., 2016, 95: 518
[12] Tofail S A M, Koumoulos E P, Bandyopadhyay A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities [J]. Mater. Today, 2018, 21: 22
[13] Wohlers T. Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report [R]. Wohlers Associates, 2018
[14] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2013, 57: 133
[15] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
[16] Tan C L, Zhou K S, Ma W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel [J]. Mater. Des., 2017, 134: 23
[17] Murr L E. Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview [J]. J. Mater. Sci. Technol., 2019, 35: 231
[18] Brooks H, Brigden K. Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling [J]. Addit. Manuf., 2016, 11: 16
[19] Zhao S, Li S J, Wang S G, et al. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting [J]. Acta Mater., 2018, 150: 1
[20] Li S, Hassanin H, Attallah MM, et al. The development of TiNi-based negative Poisson's ratio structure using selective laser melting [J]. Acta Mater., 2016, 105: 75
[21] Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Mater. Des., 2016, 95: 21
[22] Gao P, Wei K W, Yu H C, et al. Influence of layer thickness on microstructure and mechanical properties of selective laser melted Ti-5Al-2.5Sn alloy [J]. Acta Metall. Sin., 2018, 54: 999
[22] (高 飘, 魏恺文, 喻寒琛等. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律 [J]. 金属学报, 2018, 54: 999)
[23] Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
[23] (张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918)
[24] Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
[25] Wang X Q, Carter LN, Pang B, et al. Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy [J]. Acta Mater., 2017, 128: 87
[26] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
[26] (刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
[27] Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties [J]. Mater. Des., 2018, 144: 98
[28] Yang C, Zhao Y J, Kang L M, et al. High-strength silicon brass manufactured by selective laser melting [J]. Mater. Lett., 2018, 210: 169
[29] Tan C, Zhou K S, Ma W Y, et al. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties [J]. Sci. Technol. Adv. Mater., 2018, 19: 370
[30] Li N, Huang S, Zhang G D, et al. Progress in additive manufacturing on new materials: A review [J]. J. Mater. Sci. Technol., 2019, 35: 242
[31] Vasudevan V K, Kim S J, Wayman C M. Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels [J]. Metall. Trans., 1990, 21A: 2655
[32] Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition [J]. Acta Mater., 2017, 129: 52
[33] Chen J G, Zhang J F, Lu F S, et al. Outline of strengthening ways in 18Ni maraging steel [J]. Metall. Funct. Mater., 2009, 16(4): 46
[33] (陈建刚, 张建福, 卢凤双等. 18Ni马氏体时效钢强化方法概述 [J]. 金属功能材料, 2009, 16(4): 46)
[34] Decker R F, Floreen S. Maraging steels—The first 30 years [A]. Maraging Steels: Recent Developments and Applications [C]. Warrendale, PA: TMS, 1988: 1
[35] Pereloma E V, Shekhter A, Miller M K, et al. Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: Clustering, precipitation and hardening [J]. Acta Mater., 2004, 52: 5589
[36] Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56
[37] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
[38] Becker T H, Dimitrov D. The achievable mechanical properties of SLM produced maraging Steel 300 components [J]. Rapid Prototyp. J., 2016, 22: 487
[39] Zheng B, Zhou Y, Smugeresky J E, et al. Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: Part II. Experimental investigation and discussion [J]. Metall. Mater. Trans., 2008, 39A: 2237
[40] J?gle E A, Sheng Z D, Kürnsteiner P, et al. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing [J]. Materials, 2016, 10: 8
[41] Xu Z J, Zhang Y X. Quench rates in air, water, and liquid nitrogen, and inference of temperature in volcanic eruption columns [J]. Earth Planet. Sci. Lett., 2002, 200: 315
[42] J?gle E A, Choi P P, Van Humbeeck J, et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting [J]. J. Mater. Res., 2014, 29: 2072
[43] Tan C L, Zhou K S, Kuang M, et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions [J]. Sci. Technol. Adv. Mater., 2018, 19: 746
[44] Cao R C. Study on the fabrication process of 18Ni300 maraging steel by selective laser melting and the experimental analysis on laser melting of metal powders [D]. Shanghai: Shanghai Jiaotong University, 2014
[44] (曹润辰. 18Ni300马氏体时效钢选区激光熔化工艺及金属粉末激光熔化实验研究 [D]. 上海: 上海交通大学, 2014)
[45] Kang K. 18Ni-300 powder characteristics used in selective laser melting and microstructure of selective laser melted 18Ni-300 steel [D]. Chongqing: Chongqing University, 2014
[45] (康 凯. 选区激光成形用18Ni-300粉末特性及成形件组织结构的研究 [D]. 重庆: 重庆大学, 2014)
[46] Zhou Y Y, Wang F, Xue C. Microstructure and mechanical properties of 3D printing 18Ni300 die steel [J]. Phys. Test. Chem. Analy. Part A: Phys. Test., 2016, 52: 243
[46] (周隐玉, 王 飞, 薛 春. 3D打印18Ni300模具钢的显微组织及力学性能 [J]. 理化检验(物理分册), 2016, 52: 243)
[47] Tan C L, Zhou K S, Tong X, et al. Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting [A]. Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering [C]. Atlantis Press, 2016: 404
[48] Tan C L. Selective laser melting of maraging steel and its composite, gradient materials [D]. Guangzhou: South China University of Technology, 2019
[48] (谭超林. 选区激光熔化成型马氏体时效钢及其复合、梯度材料研究 [D]. 广州: 华南理工大学, 2019)
[49] Bai Y C, Yang Y Q, Wang D, et al. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting [J]. Mater. Sci. Eng., 2017, A703: 116
[50] Bai Y C. Research on the mechanism and properties controllability of selective laser melting of maraging steel [D]. Guangzhou: South China University of Technology, 2018
[50] (白玉超. 马氏体时效钢激光选区熔化成型机理及其控性研究 [D]. 广州: 华南理工大学, 2018)
[51] Yasa E, Kempen K, Kruth J, et al. Microstructure and mechanical properties of maraging steel 300 after selective laser melting [A]. Proceedings of the 21st International Solid Freeform Fabrication Symposium [C]. Austin, Texas, USA, 2010: 383
[52] Casalino G, Campanelli S L, Contuzzi N, et al. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel [J]. Opt. Laser Technol., 2015, 65: 151
[53] Demir A G, Previtali B. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction [J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2697
[54] Mutua J, Nakata S, Onda T, et al. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel [J]. Mater. Des., 2018, 139: 486
[55] Suryawanshi J, Prashanth K G, Tensile Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting [J]. J. Alloys Compd.,2017, 725: 355
[56] Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
[57] Yin S, Chen C Y, Yan X C, et al. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel [J]. Addit. Manuf., 2018, 22: 592
[58] Casati R, Lemke J N, Tuissi A, et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting [J]. Metals, 2016, 6: 218
[59] SAE AMS 6514J. Steel, maraging, bars, forgings, tubing, and rings 18.5Ni-9.0Co-4.9Mo-0.65Ti-0.10Al consumable electrode vacuum melted, annealed [S], 2005
[60] Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
[61] Bhardwaj T, Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel [J]. Mater. Sci. Eng., 2018, A734: 102
[62] Croccolo D, De Agostinis M, Fini S, et al. Influence of the build orientation on the fatigue strength of EOS maraging steel produced by additive metal machine [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 637
[63] J?gle E A, Sheng Z D, Wu L, et al. Precipitation reactions in age-hardenable alloys during laser additive manufacturing [J]. JOM, 2016, 68: 943
[64] J?gle E A, Sheng Z D, Kürnsteiner P, et al. Comparison of maraging steel micro-and nanostructure produced conventionally and by laser additive manufacturing [J]. Materials (Basel), 2016, 10: 8
[65] Sha W, Cerezo A, Smith G D W. Phase chemistry and precipitation reactions in maraging steels: Part IV. Discussion and conclusions [J]. Metall. Mater. Trans., 1993, 24A: 1251
[66] Xu W, Rivera-Díaz-del-Castillo P E J, Wang W, et al. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates [J]. Acta Mater., 2010, 58: 3582
[67] Menapace C, Lonardelli I, Molinari A. Phase transformation in a nanostructured M300 maraging steel obtained by SPS of mechanically alloyed powders [J]. J. Thermal Anal. Calorim., 2010, 101: 815
[68] He Y, Yang K, Liu K, et al. Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel [J]. Metall. Mater. Trans., 2006, 37A: 1107
[69] Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
[70] Bhavar V, Kattire P, Patil V, et al. A review on powder bed fusion technology of metal additive manufacturing [A] Proceedings of the 4th International Conference and Exhibition on Additive Manufacturing Technologies-AM-2014 [C]. Bangalore, India: CRC Press, 2014: 1
[71] System data sheet EOS M400 [M]. .2019
[72] Technical Data EOS M 400-4 [M].
[73] Tan C L, Zhou K S, Ma W Y, et al. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture [J]. Mater. Des., 2018, 155: 77
[74] Wei P, Wei Z Y, Chen Z, et al. The AlSi10Mg samples produced by selective laser melting: Single track, densification, microstructure and mechanical behavior [J]. Appl. Surf. Sci., 2017, 408: 38
[75] Arafune K, Hirata A. Thermal and solutal marangoni convection in In-Ga-Sb system [J]. J. Cryst. Growth, 1999, 197: 811
[76] Zhang Z H, Zhou H, Ren L Q, et al. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters [J]. Appl. Surf. Sci., 2008, 254: 2548
[77] Cyr E, Asgari H, Shamsdini S, et al. Fracture behaviour of additively manufactured MS1-H13 hybrid hard steels [J]. Mater. Lett., 2018, 212: 174
[78] Shi Y S. The industrial application and industrialization development of 3D printing technology [J]. Mach. Des. Manuf. Eng., 2016, 45(2): 11
[78] (史玉升. 3D打印技术的工业应用及产业化发展 [J]. 机械设计与制造工程, 2016, 45(2): 11)
[79] Mazur M, Brincat P, Leary M, et al. Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2017, 93: 881
[80] Bai Y C, Yang Y Q, Xiao Z F, et al. Selective laser melting of maraging steel: Mechanical properties development and its application in mold [J]. Rapid Prototyp. J., 2018, 24: 623
[81] Liu W J. Research on design and manufacture of injection mold with conformal cooling channel based on selective laser melting [D]. Chongqing: Chongqing University, 2017
[81] (刘卫军. 基于选择性激光熔化成型技术的随形冷却流道注塑模具的设计制造研究 [D]. 重庆: 重庆大学, 2017)
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[3] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
[4] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[5] Piao GAO, Kaiwen WEI, Hanchen YU, Jingjing YANG, Zemin WANG, Xiaoyan ZENG. Influence of Layer Thickness on Microstructure and Mechanical Properties of Selective Laser Melted Ti-5Al-2.5Sn Alloy[J]. 金属学报, 2018, 54(7): 999-1009.
[6] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[7] Yajuan ZHANG, Haibin WANG, Xiaoyan SONG, Zuoren NIE. Preparation and Performance of Spherical Ni Powder for SLM Processing[J]. 金属学报, 2018, 54(12): 1833-1842.
[8] Yongchang LIU, Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency[J]. 金属学报, 2018, 54(11): 1653-1664.
[9] Wenqi ZHANG, Haihong ZHU, Zhiheng HU, Xiaoyan ZENG. Study on the Selective Laser Melting of AlSi10Mg[J]. 金属学报, 2017, 53(8): 918-926.
No Suggested Reading articles found!