Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 285-293    DOI: 10.3724/SP.J.1037.2013.00490
Current Issue | Archive | Adv Search |
EFFECT OF Nb ON SEGREGATION, PRIMARY CARBIDES AND TOUGHNESS OF H13 STEEL
WANG Ming 1,2), MA Dangshen 2), LIU Zhentian 3), ZHOU Jian 2), CHI Hongxiao 2), DAI Jianqing 1)
1) College of Materials Science and Engineering, Kunming University of Science and Technology,
Kunming 650093
2) Institute for Special Steel, Central Iron & Steel Research Institute, Beijing 100081
3) Fushun Special Steel Co., Ltd, Fushun 113001
Download:  HTML  PDF(13665KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Mandrel is an important tool for thermal deformation of the seamless steel tube rolling unit. It requires high heat resistance and toughness due to its application in the harsh environment. H13 steel is commonly used as mandrel materials with excellent comprehensive performance. It is reported that addition of carbide-forming elements, such as Nb, Ti, or Zr, especially the Nb element, can break the dendritic microstructure and refine the cast structure of H13 steel. In addition, Nb can act as a strong carbide-forming element to favor the formation of MC carbide. This stable carbide has low solubility and does not dissolve in austenite even at high temperature, and hence fines austenite grain by pinning effect of carbide on grain boundary. As the stable NbC has stronger ability to improve the fatigue resistance and abrasion resistance than Mo6C and VC, the mandrel steel can be produced by the method of Nb addition. It has been reported that the addition of Nb in H13 can successfully increase heat resistance. Nb element dissolves into the matrix after quenching and tempering, and precipitates in the form of NbC after heat preservation for a long time, and eventually improves the resistance of material to temper softening. However, it has not been widely applied in the production because the primary carbides of NbC can seriously deteriorate toughness of steel. The purpose of the work is to analyze the effect of addition of 0.06%Nb (mass fraction) on segregation, primary carbides and toughness of large size H13 mandrel steel. The different segregation, primary carbides, structure between large size H13 and H13-Nb mandrel were investigated by employing methods of OM, SEM, EDS and EBSD, and the mechanical properties including the hardness and impact toughness were measured at room temperature. The results show that addition of 0.06%Nb aggravates segregation compared with H13. Nb increases the precipitation temperature of MC-primary carbides, and changes the type of MC-primary carbides from mainly VC to mainly (Nb, V)C which easily induces gravitational segregation of H13-Nb. The severe segregation leads to unfavorable structure of the large and nonhomogeneous effective grain size (EGS) of annealed H13-Nb, and the primary carbides do not decrease or change significantly after quenching and tempering. In the impact test, the zone of the chain-shaped carbides gathering is prone to cracking and generates horizontal stripes, resulting in low toughness.
Key words:  H13 steel      Nb      segregation      primary carbide      toughness     
Received:  03 August 2013     
ZTFLH:  TG142.1  
Fund: Supported by National Key Technologies R&D Program of China (No.2007BAE510B04)
Corresponding Authors:  WANG Ming, Tel: (010)62182762, E-mail: wangming.1208@163.com   
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

WANG Ming,),MA Dangshen ),LIU Zhentian ),ZHOU Jian ),CHI Hongxiao ),DAI Jianqing ). EFFECT OF Nb ON SEGREGATION, PRIMARY CARBIDES AND TOUGHNESS OF H13 STEEL. Acta Metall Sin, 2014, 50(3): 285-293.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00490     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/285

[1] Xie Z Y. Spec Steel Technol, 2010; 16(1): 11
(谢珍勇. 特钢技术, 2010; 16(1): 11)
[2] Akiyama M, Tsubounchi K, Tsumure M. J Mater, 2000; 214(2): 61
[3] Wang S J. Steel Pipe, 1992; 27(1): 45
(王士俊. 钢管, 1992; 27(1): 45)
[4] Wang X J, Xu M G, Chen Q L. Shanghai Met, 1998; 20(2): 8
(王小军, 徐明纲, 陈秋龙. 上海金属, 1998; 20(2): 8)
[5] Dutta B, Sellars C M. Mater Sci Technol, 1987; 3: 197
[6] Lu Z, Faulkner R G, Riddle N, Martino F D, Yang K. J Nucl Mater, 2009; 30: 445
[7] Liu J H, Ma D S, Zhang Z P, Wu L Z, Chen Z Z, Chi H X. Spec Steel, 2008; 29(6): 55
(刘建华, 马党参, 张占普, 吴立志, 陈再枝, 迟宏宵. 特殊钢, 2008; 29(6): 55)
[8] Elias C N, Da Costa Viana C S. Mater Sci Technol, 1992; 8: 785
[9] Hu X B, Li L, Wu X C. Heat Treat Met, 2004; 29(8): 13
(胡心彬, 李 麟, 吴晓春. 金属热处理, 2004; 29(8): 13)
[10] Chen Y W, Wu X C, Song W W. Trans Mater Heat Treat, 2010; 31(5): 75
(陈英伟, 吴晓春, 宋雯雯. 材料热处理学报, 2010; 31(5): 75)
[11] Ma D S, Zhou J, Zhang Z K, Chi H X, Chen Z Z. Iron Steel, 2010; 45(8): 80
(马党参, 周 健, 张忠侃, 迟宏宵, 陈再枝. 钢铁, 2010; 45(8): 80)
[12] Lu M H, Tian Y X, Cai H Y, Yin G H. Heat Treat Met, 2010; 35(8): 9
(陆明和, 田玉新, 蔡海燕, 殷光虹. 金属热处理, 2010; 35(8): 9)
[13] Chi H X, Ma D S, Liu J H, Chen Z Z, Yong Q L. Acta Metall Sin, 2010; 46: 206
(迟宏宵, 马党参, 刘建华, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 206)
[14] Chen Z Z, Lan D N. Die and Mould Steel Manual. Beijing: Metallurgical Industry Press, 2002: 378
(陈再枝, 蓝德年. 模具钢手册. 北京: 冶金工业出版社, 2002: 378)
[15] Zhou J, Ma D S, Liu B S, Kang A J, Li X Y. Res Iron Steel, 2012; (4): 47
(周 健, 马党参, 刘宝石, 康爱军, 李向阳. 钢铁研究, 2012; (4): 47)
[16] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541
(缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)
[17] Wang C F. PhD Dissertation, Central Iron & Steel Research Institute, Beijing, 2008
(王春芳. 钢铁研究总院博士学位论文, 北京, 2008)
[18] Qi J J, Huang Y H, Zhang Y. Microalloyed Steel. Beijing: Metallurgical Industry Press, 2006: 37
(齐俊杰, 黄运华, 张 跃. 微合金化钢. 北京: 冶金工业出版社, 2006: 37)
[19] Li H Y, Hu J D, Li Y H. Trans Mater Heat Treat, 2012; 33(1): 122
(李红英, 胡继东, 李阳华. 材料热处理学报, 2012; 33(1): 122)
[20] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 343
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 343)
[21] Hackl G. PhD Dissentation, University of Leoben, 1991
[22] Shi R X, Yang R C, Yin Y S, Zhou C H. Res Iron Steel, 2004; (2): 34
(师瑞霞, 杨瑞成, 尹衍升, 周春华. 钢铁研究, 2004; (2): 34)
[23] Mahnken R, Schneidt A, Antretter T. Int J Plasticity, 2009; 25(2): 183
[24] Dong J X, Zhang M C, Zeng Y P. J Univ Sci Technol Beijing, 2005; 27: 197
(董建新, 张麦仓, 曾燕屏. 北京科技大学学报, 2005; 27: 197)
[25] Liu D R, Sang B G, Kang X H, Li D Z. Acta Phys Sin, 2009; 58(6): 104
(刘东戎, 桑宝光, 康秀红, 李殿中. 物理学报, 2009; 58(6): 104)
[1] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[2] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[3] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[4] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[5] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[6] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[7] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[8] Ling LI,Shenglian YAO,Xiaoli ZHAO,Jiajia YANG,Yexi WANG,Luning WANG. Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy[J]. 金属学报, 2019, 55(8): 1008-1018.
[9] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[10] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[11] Chunbo LAN,Jianeng LIANG,Yuanxia LAO,Dengfeng TAN,Chunyan HUANG,Xianzhong MO,Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. 金属学报, 2019, 55(6): 701-708.
[12] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[13] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[14] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[15] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
No Suggested Reading articles found!