Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 285-293    DOI: 10.3724/SP.J.1037.2013.00490
Current Issue | Archive | Adv Search |
EFFECT OF Nb ON SEGREGATION, PRIMARY CARBIDES AND TOUGHNESS OF H13 STEEL
WANG Ming1,2(), MA Dangshen2, LIU Zhentian3, ZHOU Jian2, CHI Hongxiao2, DAI Jianqing1
1 College of Materials Science and Engineering, Kunming University of Science and Technology,Kunming 650093
2 Institute for Special Steel, Central Iron & Steel Research Institute, Beijing 100081
3 Fushun Special Steel Co., Ltd, Fushun 113001
Cite this article: 

WANG Ming, MA Dangshen, LIU Zhentian, ZHOU Jian, CHI Hongxiao, DAI Jianqing. EFFECT OF Nb ON SEGREGATION, PRIMARY CARBIDES AND TOUGHNESS OF H13 STEEL. Acta Metall Sin, 2014, 50(3): 285-293.

Download:  HTML  PDF(13665KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mandrel is an important tool for thermal deformation of the seamless steel tube rolling unit. It requires high heat resistance and toughness due to its application in the harsh environment. H13 steel is commonly used as mandrel materials with excellent comprehensive performance. It is reported that addition of carbide-forming elements, such as Nb, Ti, or Zr, especially the Nb element, can break the dendritic microstructure and refine the cast structure of H13 steel. In addition, Nb can act as a strong carbide-forming element to favor the formation of MC carbide. This stable carbide has low solubility and does not dissolve in austenite even at high temperature, and hence fines austenite grain by pinning effect of carbide on grain boundary. As the stable NbC has stronger ability to improve the fatigue resistance and abrasion resistance than Mo6C and VC, the mandrel steel can be produced by the method of Nb addition. It has been reported that the addition of Nb in H13 can successfully increase heat resistance. Nb element dissolves into the matrix after quenching and tempering, and precipitates in the form of NbC after heat preservation for a long time, and eventually improves the resistance of material to temper softening. However, it has not been widely applied in the production because the primary carbides of NbC can seriously deteriorate toughness of steel. The purpose of the work is to analyze the effect of addition of 0.06%Nb (mass fraction) on segregation, primary carbides and toughness of large size H13 mandrel steel. The different segregation, primary carbides, structure between large size H13 and H13-Nb mandrel were investigated by employing methods of OM, SEM, EDS and EBSD, and the mechanical properties including the hardness and impact toughness were measured at room temperature. The results show that addition of 0.06%Nb aggravates segregation compared with H13. Nb increases the precipitation temperature of MC-primary carbides, and changes the type of MC-primary carbides from mainly VC to mainly (Nb, V)C which easily induces gravitational segregation of H13-Nb. The severe segregation leads to unfavorable structure of the large and nonhomogeneous effective grain size (EGS) of annealed H13-Nb, and the primary carbides do not decrease or change significantly after quenching and tempering. In the impact test, the zone of the chain-shaped carbides gathering is prone to cracking and generates horizontal stripes, resulting in low toughness.

Key words:  H13 steel      Nb      segregation      primary carbide      toughness     
Received:  03 August 2013     
ZTFLH:  TG142.1  
Fund: Supported by National Key Technologies R&D Program of China (No.2007BAE510B04)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00490     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/285

Steel C Mn Si Cr Mo V P S Nb
Standard 0.32~0.45 020~0.50 0.80~1.20 4.75~5.50 1.10~1.75 1.10~1.75 <0.025 <0.005 -
H13 0.370 0.36 1.10 5.02 1.38 1.07 0.009 0.003 -
H13-Nb 0.365 0.44 0.96 5.19 1.37 1.08 0.008 0.004 0.06
表1  实验钢的化学成分
Fig.1  

H13和H13-Nb钢退火态的OM像

Fig.2  

H13和H13-Nb退火态显微组织的SEM像和EDS谱

Fig.3  

H13和H13-Nb钢的横向冲击韧性

Fig.4  

H13和H13-Nb钢冲击试样的断口宏观形貌

[1] Xie Z Y. Spec Steel Technol, 2010; 16(1): 11
(谢珍勇. 特钢技术, 2010; 16(1): 11)
[2] Akiyama M, Tsubounchi K, Tsumure M. J Mater, 2000; 214(2): 61
[3] Wang S J. Steel Pipe, 1992; 27(1): 45
(王士俊. 钢管, 1992; 27(1): 45)
[4] Wang X J, Xu M G, Chen Q L. Shanghai Met, 1998; 20(2): 8
(王小军, 徐明纲, 陈秋龙. 上海金属, 1998; 20(2): 8)
[5] Dutta B, Sellars C M. Mater Sci Technol, 1987; 3: 197
[6] Lu Z, Faulkner R G, Riddle N, Martino F D, Yang K. J Nucl Mater, 2009; 30: 445
[7] Liu J H, Ma D S, Zhang Z P, Wu L Z, Chen Z Z, Chi H X. Spec Steel, 2008; 29(6): 55
(刘建华, 马党参, 张占普, 吴立志, 陈再枝, 迟宏宵. 特殊钢, 2008; 29(6): 55)
[8] Elias C N, Da Costa Viana C S. Mater Sci Technol, 1992; 8: 785
[9] Hu X B, Li L, Wu X C. Heat Treat Met, 2004; 29(8): 13
(胡心彬, 李 麟, 吴晓春. 金属热处理, 2004; 29(8): 13)
[10] Chen Y W, Wu X C, Song W W. Trans Mater Heat Treat, 2010; 31(5): 75
(陈英伟, 吴晓春, 宋雯雯. 材料热处理学报, 2010; 31(5): 75)
[11] Ma D S, Zhou J, Zhang Z K, Chi H X, Chen Z Z. Iron Steel, 2010; 45(8): 80
(马党参, 周 健, 张忠侃, 迟宏宵, 陈再枝. 钢铁, 2010; 45(8): 80)
[12] Lu M H, Tian Y X, Cai H Y, Yin G H. Heat Treat Met, 2010; 35(8): 9
(陆明和, 田玉新, 蔡海燕, 殷光虹. 金属热处理, 2010; 35(8): 9)
[13] Chi H X, Ma D S, Liu J H, Chen Z Z, Yong Q L. Acta Metall Sin, 2010; 46: 206
(迟宏宵, 马党参, 刘建华, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 206)
[14] Chen Z Z,Lan D N. Die and Mould Steel Manual. Beijing: Metallurgical Industry Press, 2002: 378
(陈再枝,蓝德年. 模具钢手册. 北京: 冶金工业出版社, 2002: 378)
[15] Zhou J, Ma D S, Liu B S, Kang A J, Li X Y. Res Iron Steel, 2012; (4): 47
(周 健, 马党参, 刘宝石, 康爱军, 李向阳. 钢铁研究, 2012; (4): 47)
[16] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541
(缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)
[17] Wang C F. PhD Dissertation, Central Iron & Steel Research Institute, Beijing, 2008
(王春芳. 钢铁研究总院博士学位论文, 北京, 2008)
[18] Qi J J,Huang Y H,Zhang Y. Microalloyed Stee. Beijing: Metallurgical Industry Press, 2006: 37
(齐俊杰,黄运华,张 跃. 微合金化钢. 北京: 冶金工业出版社, 2006: 37)
[19] Li H Y, Hu J D, Li Y H. Trans Mater Heat Treat, 2012; 33(1): 122
(李红英, 胡继东, 李阳华. 材料热处理学报, 2012; 33(1): 122)
[20] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 343
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 343)
[21] Hackl G. PhD Dissentation, University of Leoben, 1991
[22] Shi R X, Yang R C, Yin Y S, Zhou C H. Res Iron Steel, 2004; (2): 34
(师瑞霞, 杨瑞成, 尹衍升, 周春华. 钢铁研究, 2004; (2): 34)
[23] Mahnken R, Schneidt A, Antretter T. Int J Plasticity, 2009; 25(2): 183
[24] Dong J X, Zhang M C, Zeng Y P. J Univ Sci Technol Beijing, 2005; 27: 197
(董建新, 张麦仓, 曾燕屏. 北京科技大学学报, 2005; 27: 197)
[25] Liu D R, Sang B G, Kang X H, Li D Z. Acta Phys Sin, 2009; 58(6): 104
(刘东戎, 桑宝光, 康秀红, 李殿中. 物理学报, 2009; 58(6): 104)
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[3] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[4] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[5] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[6] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[7] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[8] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[9] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[10] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[12] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[13] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[14] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[15] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
No Suggested Reading articles found!