Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 1003-1011    DOI: 10.3724/SP.J.1037.2013.00078
Current Issue | Archive | Adv Search |
ANALYSIS OF FRACTURE DURING SUPERPLASTIC TENSION
GUAN Zhiping, MA Pinkui, SONG Yuquan
Superplastic and Plastic Research Institute, Jilin University, Changchun 130022
Download:  PDF(630KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The matter of fracture in tension is also the issue of fracture elongation. The ability of superplasticity of materials is mainly characterized by excellent fracture elongations. Since first superplastic phenomenon was recorded, the investigations of superplasticity have not halted. Most of the existing literatures focused on physical or microstructural mechanisms while less attention was paid to mechanical theories on the superplastic deformation. However, superplastic phenomena on large elongation in superplastic tension are closely related to the mechanical stability and are finally dependent on the special fracture mechanism. Correspondingly, in this article, the studies of fracture mechanism of the superplastic deformation are reviewed, which involved nucleation, growth and coalescence of cavities. Then, the literatures related to the mechanical stability in superplastic tension are classified and reviewed, which involved the mechanical analysis and numerical simulation of the fracture elongation or the limit strain induced from neck’s initiation and development. The conclusions indicate that there has yet been no united and confirmed opinion on the superplastic fracture mechanism which has numerous versions from the microstructural or physical view, and the superplastic fracture mechanism would have maken no significant progress unless many long-term investigations will be carried out in the future. In order to interpret the essence of large fracture elongation, the current task should be thoroughly investigate the mechanical stability in superplastic tension based on the advanced technology of numeric analysis. In numeric analysis, the precise and quantitative constitutive equation should be adopted and the deformation conditons involving strain paths should be taken into account.

Key words:  Superplasticity      tension      fracture elongation      limit strain, cavity     
Received:  04 February 2013     

Cite this article: 

GUAN Zhiping, MA Pinkui, SONG Yuquan. ANALYSIS OF FRACTURE DURING SUPERPLASTIC TENSION. Acta Metall Sin, 2013, 49(8): 1003-1011.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00078     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/1003

[1] Sato E, Kuribayashi K.  ISIJ Int, 1993; 33: 825 [2] Langdon T G.  Met Sci, 1982; 16: 175
[3] Lian J, Suery M.  Mater Sci Technol, 1986; 2: 1093
[4] Lin Z R.  The Principle and Application of Metal Superplastic Formation.Beijing: The Aviation Industury Press, 1990: 24
(林兆荣. 金属超塑性成形原理及应用. 北京: 航空工业出版社, 1990: 24)
[5] Ghandi C, Ghosh A K. In: Lee E W, Chia E H, Kim N J eds.,Light Weight Alloys of Aerospace Applications. Warrendale:The Minerals and Materials Society, 1989: 419
[6] Lombard C M, Ghosh A K, Semiatin S L.  Metall Mater Trans, 2001; 32A: 2769
[7] Zaki M, Suery M.  Proc Current Advances in Mechanical Design and Production: 5th MDP Conference, Cairo: University Egypt, 1991: 467
[8] Kaibyshev R, Sakai T.  Scr Mater, 2001; 45: 1373
[9] Chokshi A H, Langdon T G.  Acta Metall, 1989; 37: 715
[10] Jiang X G, Earthman J C.  J Mater Sci, 1994; 29: 5499
[11] Gouthama, Padmanabhan K A.  Scr Mater, 2003; 49: 761
[12] Raj R, Ashby M F.  Metall Trans, 1971; 2: 1113
[13] Shei S A, Longdon T G.  J Mater Sci, 1978; 13: 1084
[14] Ghosh A K. In: Hamilton C H, Paton N E eds., Superplastic Forming of Structure Alloys. Warrendale: Metall Soc of AIME, 1982: 85
[15] Ma Y, Langdon T G. In: Hamilton C H, Paton N E eds.,Superplasticity and Superplastic Forming.Warrendale: The Minerals and Materials Society, 1988: 173
[16] Chokshi A H, Langdon T G.  Acta Metall, 1987; 35: 1089
[17] Furushiro N, Langdon T G. In: Hamilton C H, Paton N E eds., Superplasticity and Superplastic Forming. Warrendale: The Minerals and Materials Society, 1988: 197
[18] Stowell M J. In: Hamilton C H, Paton N E eds., Superplastic Forming of Structure Alloys. Warrendale:Metall Soc of AIME, 1982: 321
[19] Stowell M J.  Met Sci, 1983; 17: 92
[20] Stowell M J, Livesey D W.  Acta Metall, 1984; 32: 35
[21] Needleman A, Rice J R.  Acta Metall, 1980; 28: 1315
[22] Rice J R.  Acta Metall, 1981; 29: 675
[23] Cocks A C, Ashby M F.  Met Sci, 1980; 14: 395
[24] Wilkinson D S, Caceres C H.  Mater Sci Technol, 1986; 2: 1086
[25] Cocks A C, Ashby M F.  Prog Mater Sci, 1982; 27: 189
[26] Hamilton C H, Bampton C C, Paton N E. In: Hamilton C H,Paton N E eds.,  Superplastic Forming of Structure Alloys.Warrendale: Metall Soc of AIME, 1982: 173
[27] Ragab A R.  Mater Sci Eng, 2007; A454--455: 614
[28] Thomason P F.  Ductile Fracture of Metals. Oxford: Pergamon Press, 1990: 1
[29] Ragab A R.  Acta Mater, 2004; 52: 3997
[30] Chen I W, Xue L A.  J Am Ceram Soc, 1990; 73: 2585
[31] Kim W J, Wolfenstine J, Sherby O D.  Acta Metall Mater, 1991; 39: 199
[32] Rybacki E, Wirth R, Dresen G.  J Geophys Res--Solid Earth, 2010; 115: B08209
[33] Mandelbrot B B.  The Fractal Geometry of Nature. New York: Freeman, 1983: 1
[34] Mandelbrot B B, Passoja D E, Paullay A L.  Nature, 1984; 308: 721
[35] Jiang X G, Chu W Y, Hsiao C M.  Acta Metall Mater, 1994; 42: 105
[36] Jiang X G, Cui J Z, Ma L X.  Acta Metall Mater, 1992; 40: 1267
[37] Kaibyshev A, Pshenichnyuk A I.  Acta Mater, 1998; 46: 4911
[38] Kaibyshev A, Pshenichnyuk A I.  Mater Sci Eng, 2005; A410--411: 105
[39] Consid$\grave{\rm e$re A.  Annales Ponts Chauss$\acute{e$es, 1885; 9: 574
[40] Backofen W A, Turner I R, Avery D H.  Trans ASM Quart, 1964; 57: 980
[41] Avery D H, Stuart J M. In: Burke J J, Weiss V eds., Surface and Interfaces II. New York: Syracuse University Press, 1968: 371
[42] Morrison W B.  Trans Metall Soc AIME, 1968; 242: 2221
[43] Holt D L. In: Burke J J, Weiss V eds., Ultrafine Grain Metals. New York: Syracuse University Press, 1970: 355
[44] Matsuo M, translated by Kang D C.  Superplasticity and Technology of Metal Forming. Beijing: China Machine Press, 1985: 36
(宫川松男~著, 康达昌~译. 超塑性和金属加工技术. 北京: 机械工业出版社, 1985: 36)
[45] Nichols A.  Acta Metall, 1980; 28: 663
[46] Liu C.  JSTP, 1983; 270: 692
(刘勤. 塑性と加工, 1983; 270: 692)
[47] Liu C, Zhou S Y.  Mater Sci Prog, 1988; 2: 1
(刘勤, 周善佑. 材料科学进展, 1988; 2: 1)
[48] Liu C.  Superplasticity of Metal. Shanghai: Shanghai Jiao Tong University Press, 1989: 102
(刘勤, 金属的超塑性. 上海: 上海交通大学出版社, 1989: 102)
[49] Liu C.  Metall Trans, 1986; 17A: 674
[50] Song Y Q, Gao B E, Wang X W.  Sci China, 1998; 28E: 193
(宋玉泉, 高柏恩, 王习文. 中国科学, 1998; 28E: 193)
[51] Hart E W.  Acta Metall, 1967; 15: 351
[52] Campbell D.  J Mech Phys Solids, 1967; 15: 359
[53] Jonas J J, Christodoulou N.  Scr Metall, 1978; 12: 393
[54] Jonas J J, Christodoulou N.  Scr Metall, 1978; 12: 565
[55] Song Y Q, Liu S M, Hou L.  Chin Sci Bull, 2002; 47: 717
(宋玉泉, 刘术梅, 侯磊. 科学通报, 2002; 47: 717)
[56] Hasegawa T, Okazaki K.  Mater Sci Eng, 2001; A297: 266
[57] Kim W J, Lee B H.  Mater Sci Eng, 2010; A527: 5984
[58] Samantaray D, Mandal S, Bhaduri A K.  Mater Des, 2011; 32: 716
[59] Song Y Q, Suo Z L, Guan Z P, Liu Y.  Acta Metall Sin, 2006; 42: 337
(宋玉泉, 索忠林, 管志平, 刘颖. 金属学报, 2006; 42: 337)
[60] Song Y Q.  Chin J Mech Eng, 2003; 39: 64
(宋玉泉. 机械工程学报, 2003; 39: 64)
[61] Ghosh A K.  Acta Metall, 1977; 25: 1413
[62] Kocks U F, Jonas J J, Mecking H.  Acta Metall, 1979; 27: 419
[63] Lin I H, Hirth J P, Hart E W.  Acta Metall, 1981; 29: 819
[64] Lian J S.  Chin J Mech Eng, 1982; 18: 21
(连建设. 机械工程学报, 1982; 18: 21)
[65] Semiatin S L, Jonas J J.  Formability and Workability of Metals: Plastic Instability and Flow Localization. Metals Park, Ohio: ASM, 1984: 155
[66] Ghosh A K, Ayres R.  Metall Mater Trans, 1976; 7A: 1589
[67] Hutchinson W, Neale K W.  Acta Metall, 1977; 25: 839
[68] Lian J S, Baudelet B.  Met Sci Technol, 1990; 9: 83
(连建设, Baudelet B. 金属科学与工艺, 1990; 9: 83)
[69] Giroux P F, Dalle F, Sauzay M, Malaplate J, Fournier B, Gourgues--Lorenzon A F. Mater Sci Eng, 2010; A527: 3984
[70] Duncombe E.  Int J Solids Struct, 1974; 10: 1445
[71] Marciniak Z, Kuczynski K.  Int J Mech Sci, 1967; 9: 609
[72] Lian J S, Zhang J R.  Acta Metall Sin, 1985; 21: 88
(连建设, 张吉人. 金属学报, 1985; 21: 88)
[73] Lian J, Baudelet B.  Mater Sci Eng, 1986; 84: 157
[74] Song Y Q, Guan Z P, Wang M H, Song J W.  Sci China, 2007; 37E: 80
(宋玉泉, 管志平, 王明辉, 宋家旺. 中国科学, 2007; 37E: 80)
[75] Zhang J R, Lian J S.  Met Sci Technol, 1984; 3: 17
(张吉人, 连建设. 金属科学与工艺, 1984; 3: 17)
[76] Hamilton C H.  Metall Trans, 1989; 20A: 2783
[77] Kannan K, Hamilton C H.  Scr Mater, 1997; 37: 455
[78] Kannan K, Hamilton C H.  Acta Mater, 1998; 46: 5533
[79] Burke M A, Nix W D.  Acta Metall, 1975: 23: 793
[80] Semiatin S L, Ghosh A K, Jonas J J.  Metall Trans, 1985; 16A: 2291
[81] Schuh C, Dunand D C.  J Mater Res, 2001; 16: 865
[82] Miles M P, Daehn G S, Wagoner R H.  Metall Mater Trans, 2003; 34A: 2559
[83] Manonukul, Dunne F P.  Key Eng Mater, 1996; 118--119: 123
[84] Dunne F P.  Int J Plasticity, 1998; 14: 413
[85] Dunne F P, Kim T.  Proc R Soc Lond, 1999; 455A: 719
[86] Wu Y Q, Zhang K S.  Acta Mech Solida Sin, 2003; 24: 313
(吴艳青, 张克实. 固体力学学报, 2003; 24: 313)
[87] Takuji O, Tomei H.  Trans Iron Steel Inst Jpn, 1986; 72: S1624
 (岡部卓治, 畑山東明. 日本鐡鋼協會々誌, 1986; 72: S1624)
[88] Lian J, Baudelet B.  Scr Metall, 1987; 21: 331
[89] Song Y Q, Cheng Y C, Liu Y.  Sci China, 2000; 30E: 200
(宋玉泉, 程永春, 刘颖. 中国科学, 2000; 30E: 200)
[90] Song Y Q, Hai J T, Guan Z P.  Sci China, 2001; 31E: 103
(宋玉泉, 海锦涛, 管志平. 中国科学, 2001; 31E: 103)
[91] Song Y Q, Cheng Y C, Wang X W.  Chin J Mech Eng, 2000; 36: 33   
 (宋玉泉, 程永春, 王习文. 机械工程学报, 2000; 36: 33)
[92] Song Y Q, Cheng Y C, Liu S M.  Chin J Mech Eng, 2001; 37: 5   
 (宋玉泉, 程永春, 刘术梅. 机械工程学报, 2001; 37: 5)

[1] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[2] Zhangzhi SHI, Xuefeng LIU. Double Extension Twin and Its Related CompoundTwin Structures in Mg[J]. 金属学报, 2018, 54(12): 1715-1724.
[3] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
[4] Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. 金属学报, 2018, 54(12): 1785-1791.
[5] Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys[J]. 金属学报, 2018, 54(11): 1618-1624.
[6] Jinbao LIN,Weijie REN,Xinyi WANG. RESEARCH ON THE TENSION-COMPRESSION ASYM-METRY OF AS-EXTRUDED ZK60 MAGNESIUM ALLOYS AT ROOM TEMPERATURE[J]. 金属学报, 2016, 52(3): 264-270.
[7] Longfei CHEN,Yikun LUAN,Dianzhong LI,Yiyi LI. SOLID FEEDING MECHANISM AND ITS APPLICA-TION ON CASTINGS WITH LARGE HEIGHT-TO-DIAMETER RATIO[J]. 金属学报, 2016, 52(12): 1510-1516.
[8] Qingjuan WANG,Xiao ZHOU,Bo LIANG,Ying ZHOU. HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY[J]. 金属学报, 2016, 52(11): 1477-1483.
[9] Chao YANG,Jijie WANG,Zongyi MA,Dingrui NI,Mingjie FU,Xiaohua LI,Yuansong ZENG. FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET[J]. 金属学报, 2015, 51(12): 1449-1456.
[10] FU Mingjie, HAN Xiuquan, WU Wei, ZHANG Jianwei. SUPERPLASTICITY RESEARCH OF Ti-23Al-17Nb ALLOY SHEET[J]. 金属学报, 2014, 50(8): 955-961.
[11] MA Pinkui,SONG Yuquan. BINOCULAR STEREO VISION MEASUREMENT RESEARCH FOR SUPERPLASTICFREE BULGING[J]. 金属学报, 2014, 50(4): 471-478.
[12] FENG Rui,ZHANG Meihan,CHEN Nailu,ZUO Xunwei,RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[13] HUANG Hongtao, Godfrey Andrew, LIU Wei, FU Baoqin,LIU Qing. DEFORMATION BEHAVIOR OF AZ31 MAGNESIUM ALLOY DURING MULTIAXIAL COMPRESSION BY EBSD TRACKING[J]. 金属学报, 2013, 49(8): 932-938.
[14] YAN Ying, LU Meng, LI Xiaowu. EFFECTS OF PRE-FATIGUE DEFORMATION ON THE  UNIAXIAL TENSILE BEHAVIOR OF COARSEGRAINED PURE Al[J]. 金属学报, 2013, 49(6): 658-666.
[15] SHEN Jun, FENG Aihan. RECENT ADVANCES ON MICROSTRUCTURAL CONTROLLING AND HOT FORMING OF Ti2AlNb-BASED ALLOYS[J]. 金属学报, 2013, 49(11): 1286-1294.
No Suggested Reading articles found!