Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1449-1456    DOI: 10.11900/0412.1961.2015.00154
Current Issue | Archive | Adv Search |
FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET
Chao YANG1,2,Jijie WANG2,Zongyi MA1,Dingrui NI1(),Mingjie FU3,Xiaohua LI3,Yuansong ZENG3
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 College of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110036
3 Metal Forming Technology Department, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
Cite this article: 

Chao YANG,Jijie WANG,Zongyi MA,Dingrui NI,Mingjie FU,Xiaohua LI,Yuansong ZENG. FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET. Acta Metall Sin, 2015, 51(12): 1449-1456.

Download:  HTML  PDF(980KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Annealed 7B04 Al sheets in thickness of 2 mm were subjected to friction stir welding (FSW) under three rotation rate and welding speed parameters of 1600 r/min, 200 mm/min; 800 r/min, 200 mm/min and 400 r/min, 400 mm/min, respectively. The effect of welding parameters on the tensile property and microstructure of the FSW joints were investigated, with more efforts focusing on the low-temperature superplasticity of the nugget zones (NZs). The results showed that FSW joints with high quality could be produced by controlling welding parameters, with a joint strength coefficient of 100% being obtained. Dynamic recrystallization took place in the NZs with fine and equiaxed grains generated. The grain size of the base material was about 300 μm, while it was significantly decreased in the NZs with decreasing the rotation rate: about 2, 1 and 0.6 μm for the above three samples, respectively. The fine grain structure of the NZs could facilitate their superplastic deformation. The NZs exhibited superplastic elongations ranged from 160% to 590% at 300 ℃ at strain rates of 1×10-3 and 3×10-4 s-1. The maximum superplasticity of 790% was obtained at 350 ℃ at the strain rate of 1×10-3 s-1. The ability to superplastic deformation disappeared in the NZs at 400 ℃.

Key words:  ultra-high strength aluminium alloy      friction stir welding      superplasticity      microstructure     
Fund: Supported by National Natural Science Foundation of China (No.51331008)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00154     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1449

Fig.1  Schematics of tensile sample of friction stir welding (FSW) joint at room temperature (a) and superplastic tensile sample of nugget zone (NZ) (b) (unit: mm)
Direction Tensile strength / MPa Yield strength / MPa Elongation / %
Lengthways 210.0 90.0 16.5
Crosswise 211.0 98.0 16.3
Table 1  Tensile properties of 7B04 aluminum alloy base metal (BM) at room temperature
Specimen Ratation rate rmin-1 Welding speed mmmin-1 Tensile strength MPa Yield strength MPa Elongation %
400-400 400 400 213.5 76.0 14.5
800-200 800 200 216.5 98.5 14.7
1600-200 1600 200 212.5 78.5 16.5
Table 2  Tensile properties of FSW 7B04 aluminum alloy at room temperature
Fig.2  OM images of different welds (a~c) and FSW 7B04 aluminum alloy joints (d~f) of samples 400-400 (a, d), 800-200 (b, e) and 1600-200 (c, f) (AS—advancing side, RS—retreating side)
Fig.3  OM image of 7B04 aluminum alloy BM
Fig.4  TEM images of 7B04 aluminum alloy BM (a) and FSW NZs of samples 400-400 (b), 800-200 (c) and 1600-200 (d)
Fig.5  XRD spectra of 7B04 aluminum alloy BM and NZ of sample 400-400
Fig.6  Superplastic tensile properties of FSW 7B04 aluminum alloy
Fig.7  Sample morphologies of FSW 7B04Al NZs after superplastic deformation under various conditions

(a) undeformed sample

(b) sample 1600-200 under 300 ℃ and 3×10-4 s-1

(c) sample 800-200 under 300 ℃ and 3×10-4 s-1

(d) sample 400-400 under 300 ℃ and 3×10-4 s-1

(e) sample 400-400 under 350 ℃ and 1×10-3 s-1

Fig.8  SEM images of surface morphologies of tensile 400-400 sample near fracture tip under 300 ℃, 3×10-4 s-1 (a) and 350 ℃, 1×10-3 s-1 (b)
[1] Thomas W M, Nicholas E D, Needham J C, Murch M G, Temple-Smith P, Dawes C J. Great Britain Pat, 9125978.8, 1991
[2] Thomas W M, Nicholas E D, Needham J C, Murch M G, Temple-Smith P, Dawes C J. US Pat, 5460317, EPS 0616490, 1991
[3] Mishra R S, Mahoney M W. Mater Sci, 2001; 507: 357
[4] Luan G H, Guo D L, Zhang T C, Sun C B. Weld Technol, 2003; 32: 1
[4] (栾国红, 郭德伦, 张田仓, 孙成彬. 焊接技术, 2003; 32: 1)
[5] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 2002; 42: 163
[6] Ma Z Y, Mishra R S, Mahoney M W. Acta Mater, 2002; 50: 4419
[7] Ma Z Y, Mishra R S, Mahoney M W, Grimes R. Mater Sci Eng, 2003; A351: 148
[8] Ma Z Y, Mishra R S. Acta Mater, 2003; 51: 3551
[9] Ma Z Y, Liu F C, Mishra R S. Acta Mater, 2010; 58: 4693
[10] Xue P, Xiao B L, Ma Z Y. Acta Mater, 2014; 50: 245
[10] (薛 鹏, 肖伯律, 马宗义. 金属学报, 2014; 50: 245)
[11] Flores O V, Kennedy C, Murr L E, Brown D, Pappu S, Nowak B M, McClure J C. Scr Mater, 1998; 38: 703
[12] Jata K V, Semiatin S L. Scr Mater, 1998; 38: 703
[13] Su J Q, Nelson T W, Mishra R S, Mahoney M. Acta Mater, 2003; 51: 713
[14] Salem H G. Scr Mater, 2003; 49: 1103
[15] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 1999; 42: 163
[16] Liu F C, Ma Z Y. Scr Mater, 2008; 58: 667
[17] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[18] Motohashi Y, Sakuma T, Goloborodko A, Ito T, Itoh G. Mater Wissenschaft Werkstofftechnik, 2008; 39: 4
[19] Jian H G, Jiang F, Xu Z Y, Guan D K. Hot Work Technol, 2006; 35(6): 66
[19] (蹇海根, 姜 锋, 徐忠艳, 官迪凯. 热加工工艺, 2006; 35(6): 66)
[20] Liu X T, Cui J Z. Mater Rev, 2005; 19(3): 47
[20] (刘晓涛, 崔建忠. 材料导报, 2005; 19(3): 47)
[21] Wang M, Zhang H J, Zhang J B, Zhang X, Yang L. Mater Eng Perform, 2014; 23: 1881
[22] Wang Y H, Chen Y H, Huang C P, Ke L M. Hot Work Technol, 2012; 41(15): 161
[22] (王运会, 陈玉华, 黄春平, 柯黎明. 热加工工艺, 2012; 41(15): 161)
[23] Charit I, Mishra R S. Acta Mater, 2005; 53: 4211
[24] Ren S R, Ma Z Y, Chen L Q, Zhang Y Z. Acta Metall Sin, 2007; 43: 225
[24] (任淑荣, 马宗义, 陈礼清, 张玉政. 金属学报, 2007; 43: 225)
[25] Liu F C, Ma Z Y. Acta Metall Sin, 2008; 44: 319
[25] (刘峰超, 马宗义. 金属学报, 2008; 44: 319)
[26] Pu H P, Liu F C, Huang J C. Metall Mater Trans, 1995; 26: 1153
[27] Ma Z Y, Mishra R S. Friction Stir Superplasticity for Unitized Structures. Chapter 4, Netherlands: Elsevier, 2014: 19
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!