Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (12): 1715-1724    DOI: 10.11900/0412.1961.2018.00291
Orginal Article Current Issue | Archive | Adv Search |
Double Extension Twin and Its Related CompoundTwin Structures in Mg
Zhangzhi SHI1,2(), Xuefeng LIU1,2,3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
3 Key Laboratory for Advanced Materials Processing of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Zhangzhi SHI, Xuefeng LIU. Double Extension Twin and Its Related CompoundTwin Structures in Mg. Acta Metall Sin, 2018, 54(12): 1715-1724.

Download:  HTML  PDF(3832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper summarizes recent research progresses on {10$\bar{1}$2}-{10$\bar{1}$2} double extension twin and its related compound twin structures in Mg. Tension-compression asymmetry of Mg with strong texture can be greatly alleviated through sequential multi-directional deformations, which consist of several sequential bi-axial deformations. There exist 36 possible double extension twin variants, which can be classified into four misorientation groups according to their misorientations with respect to the grain matrix. One of the groups appears with a much higher frequency than the others, which cannot be perfectly explained by Schmid factor (SF) rule. Primary and secondary extension twins form intergranular and intragranular compound twin structures without any one-for-all mechanism. SF rule and m' factor, which evaluates how much twinning shear can pass through an interface, partly or even totally fail to explain the formation of the compound twin structures, presenting challenge to make clear mechanism of twin formation under complex loading conditions. It is suggested that modelling on the formation of intragranular compound twin structure and experimental characterization of interfacial structures of primary twin-twin boundary and secondary twin boundary should be paid much attention in the future.

Key words:  Mg      sequential bi-axial deformation      double extension twin      compound twin structure     
Received:  29 June 2018     
ZTFLH:  TG146.22  
Fund: Supported by National Natural Science Foundation of China (No.51601010)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00291     OR     https://www.ams.org.cn/EN/Y2018/V54/I12/1715

Variant Twinning plane Twinning direction
PV1/SV1 (10$\bar{1}$2) [$\bar{1}$011]
PV2/SV2 (01$\bar{1}$2) [0$\bar{1}$11]
PV3/SV3 ($\bar{1}$102) [1$\bar{1}$01]
PV4/SV4 ($\bar{1}$012) [10$\bar{1}$1]
PV5/SV5 (0$\bar{1}$12) [01$\bar{1}$1]
PV6/SV6 (1$\bar{1}$02) [$\bar{1}$101]
Table 1  Variants of priamry and secondary extension twins, desiganted by PV and SV respectively[13,26]
Fig.1  EBSD measured microstructure containing a grain G1 with several twins (a), and {0001} pole figure of the twins and its grain matrix in Fig.1a (b) (IPF—inverse pole figure, RD—rolling direction, TD—transverse direction, ND—normal direction)
Variant SV1 SV2 SV3 SV4 SV5 SV6
PV1 <0 14 $\bar{14}$ 1>60° <7$\bar{8}$10>60.4° <1$\bar{2}$10>7.4° <1$\bar{8}$70>60.4° <$\bar{14}$ 14 0 $\bar{1}$>60°
PV2 <$\bar{14}$ 0 14 $\bar{1}$>60° <$\bar{14}$ 14 0 1>60° <8$\bar{1}$ $\bar{7}$0>60.4° <2$\bar{1}$ $\bar{1}$0>7.4° <8$\bar{7}$ $\bar{1}$0>60.4°
PV3 <71$\bar{8}$0>60.4° <0 $\bar{14}$ 14 $\bar{1}$>60° <$\bar{14}$ 0 14 1>60° <17$\bar{8}$0>60.4° <11$\bar{2}$0>7.4°
PV4 <$\bar{1}$2$\bar{1}$0>7.4° <$\bar{1}$8$\bar{7}$0>60.4° <14 $\bar{14}$ 0 $\bar{1}$>60° <0 $\bar{14}$ 14 1>60° <$\bar{7}$8$\bar{1}$0>60.4°
PV5 <$\bar{8}$170>60.4° <$\bar{2}$110>7.4° <$\bar{8}$710>60.4° <14 0 $\bar{14}$ $\bar{1}$>60° <14 $\bar{14}$ 0 1>60°
PV6 <14 0 $\bar{14}$ 1>60° <$\bar{1}$ $\bar{7}$80>60.4° <$\bar{1}$ $\bar{1}$20>7.4° <$\bar{7}$ $\bar{1}$80>60.4° <0 14 $\bar{14}$ $\bar{1}$>60°
Table 2  All 36 possible variants PVj-SVk (j, k=1~6) of double extension twin[13]
Group Misorientation Variant
I 6
II <1$\bar{2}$10>7.4° 6
III <0 14 $\bar{14}$ 1>60° 12
IV <17$\bar{8}$0> 60.4° 12
Table 3  Four misorientation groups of double extension twin variants[13]
Fig.2  Compound twin structures
(a) intergranular compound twin structure consists of primary twins G1-P1, G2-P1 and secondary twins G1-P1-S1, G2-P1-S1[14]
(b) intragranular compound twin structure consists of primary twins G3-P1, G3-P2 and secondary twin G3-P1-S1[15]
Fig.3  EBSD statistical analysis of compound twin structures
(a) four conditions of intergranular compound twin structure (GB—grain boundary. Symbols ○ and * represent m’ values of primary twin pairs and those of secondary twin pairs, respectively)[14]
(b) frequency ranking of all 13 possible intragranular compound twin structures[15]
OR-(θ1, θ2, θ3) PVi & PVj-SVk PVi & PVj G & PVj-SVk m'
OR1-(44.0°, 60.0°, 60.0°) <0$\bar{3}$32>44.0° <0 14 $\bar{14}$ 1>60.0° <0 14 $\bar{14}$ 1>60.0° -0.07
OR2-(49.7°, 60.0°, 60.0°) <02$\bar{2}$1>49.7° <0 14 $\bar{14}$ 1>60.0° <0 14 $\bar{14}$ 1>60.0° -0.15
OR3-(49.7°, 60.0°, 60.4°) <7$\bar{6}$ $\bar{1}$ $\bar{4}$>49.7° <0 14 $\bar{14}$ 1>60.0° <17$\bar{8}$0>60.4° 0.11
OR4-(49.7°, 60.4°, 60.0°) <7$\bar{6}$ $\bar{1}$ $\bar{4}$>49.7° <17$\bar{8}$0>60.4° <0 14 $\bar{14}$ 1>60.0° 0.11
OR5-(37.9°, 60.4°, 60.4°) <02$\bar{2}$1>37.9° <17$\bar{8}$0>60.4° <17$\bar{8}$0>60.4° -0.10
OR6-(55.1°, 60.4°, 60.4°) <02$\bar{2}$1>55.1° <17$\bar{8}$0>60.4° <17$\bar{8}$0>60.4° -0.11
OR7-(44.0°, 60.4°, 60.0°) <02$\bar{2}$1>44.0° <17$\bar{8}$0>60.4° <0 14 $\bar{14}$ 1>60.0° 0.17
OR8-(44.0°, 60.0°, 60.4°) <02$\bar{2}$1>44.0° <0 14 $\bar{14}$ 1>60.0° <17$\bar{8}$0>60.4° 0.17
OR9-(78.9°, 7.4°, 7.4°) <1$\bar{2}$10>78.9° <1$\bar{2}$10>7.4° <1$\bar{2}$10>7.4° -0.98
OR10-(82.8°, 7.4°, 60.4°) <1$\bar{2}$10>82.8° <1$\bar{2}$10>7.4° <17$\bar{8}$0>60.4° -0.55
OR11-(82.8°, 60.4°, 7.4°) <1$\bar{2}$10>82.8° <17$\bar{8}$0>60.4° <1$\bar{2}$10>7.4° -0.55
OR12-(90.2°, 7.4°, 60.0°) <1$\bar{2}$10>90.2° <1$\bar{2}$10>7.4° <0 14 $\bar{14}$ 1>60.0° -0.06
OR13-(90.2°, 60.0°, 7.4°) <1$\bar{2}$10>90.2° <0 14 $\bar{14}$ 1>60.0° <1$\bar{2}$10>7.4° -0.06
Table 4  All 13 possible intragranular compound twin structures and calculated m' of PVi and PVj-SVk (i, j, k=1~6; ji, k)[15]
Fig.4  Mechanisms of formation of compound twin structures
(a) two mechanisms of formation of intergranular compound twin structure[14]
(b) two routes of associated nucleation of intergranular compound twin structure[14]
(c) mechanisms and routes of formation of intragranular compound twin structure[15]
[1] Christian J W, Mahajan S.Deformation twinning[J]. Prog. Mater Sci., 1995, 39: 1
[2] Partridge P G.The crystallography and deformation modes of hexagonal close-packed metals[J]. Metall. Rev., 1967, 12: 169
[3] Tu J, Zhang S Q.On the {10$\bar{1}$2} twinning growth mechanism in hexagonal close-packed metals[J]. Mater. Des., 2016, 96: 143
[4] Barnett M R, Keshavarz Z, Beer A G, et al.Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy[J]. Acta Mater., 2008, 56: 5
[5] Cizek P, Barnett M R.Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension[J]. Scr. Mater. 2008, 59: 959
[6] Lentz M, Risse M, Schaefer N, et al.Strength and ductility with {1011}-{10$\bar{1}$2} double twinning in a magnesium alloy[J]. Nat. Commun., 2016, 7: 11068
[7] Martin é, Capolungo L, Jiang L, et al.Variant selection during secondary twinning in Mg-3%Al[J]. Acta Mater., 2010, 58: 3970
[8] Agnew S R, Duygulu ?.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. Int. J. Plast., 2005, 21: 1161
[9] Hutchinson W B, Barnett M R.Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals[J]. Scr. Mater., 2010, 63: 737
[10] Koike J.Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J]. Metall. Mater. Trans., 2005, 36A: 1689
[11] Xu S, Liu T M, Chen H C, et al.Reducing the tension-compression yield asymmetry in a hot-rolled Mg-3Al-1Zn alloy via multidirectional pre-compression[J]. Mater. Sci. Eng., 2013, A565: 96
[12] Song B, Xin R L, Sun L Y, et al.Influencing factors and controlling methods of tension-compression asymmetry in magnesium alloys[J]. Chin. J. Nonferrous Met., 2014, 24: 1941(宋波, 辛仁龙, 孙立云等. 镁合金拉伸压缩不对称性的影响因素及控制方法[J]. 中国有色金属学报, 2014, 24: 1941)
[13] Shi Z Z, Zhang Y D, Wagner F, et al.Sequential double extension twinning in a magnesium alloy: Combined statistical and micromechanical analyses[J]. Acta Mater., 2015, 96: 333
[14] Shi Z Z.Compound cross-grain boundary extension twin structure and its related twin variant selection in a deformed Mg alloy[J]. J. Alloys Compd., 2017, 716: 128
[15] Shi Z Z, Xu J Y, Yu J, et al.Intragranular cross-level twin pairs in AZ31 Mg alloy after sequential biaxial compressions[J]. J. Alloys Compd., 2018, 749: 52
[16] Godet S, Jiang L, Luo A A, et al.Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes[J]. Scr. Mater., 2006, 55: 1055
[17] Jonas J J, Mu S J, Al-Samman T, et al.The role of strain accommodation during the variant selection of primary twins in magnesium[J]. Acta Mater., 2011, 59: 2046
[18] Xin R L, Guo C F, Xu Z R, et al.Characteristics of long {10$\bar{1}$2} twin bands in sheet rolling of a magnesium alloy[J]. Scr. Mater., 2014, 74: 96
[19] Shi Z Z, Liu X F.Characteristics of cross grain boundary contraction twin pairs and bands in a deformed Mg alloy[J]. J. Alloys Compd., 2017, 692: 274
[20] Hong X, Godfrey A, Liu W.Challenges in the prediction of twin transmission at grain boundaries in a magnesium alloy[J]. Scr. Mater., 2016, 123: 77
[21] Barnett M R, Nave M D, Ghaderi A.Yield point elongation due to twinning in a magnesium alloy[J]. Acta Mater., 2012, 60: 1433
[22] Park S H, Hong S G, Lee J H, et al.Multiple twinning modes in rolled Mg-3Al-1Zn alloy and their selection mechanism[J]. Mater. Sci. Eng., 2012, A532: 401
[23] Shi Z Z, Zhang Y D, Wagner F, et al.On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy[J]. Acta Mater., 2015, 83: 17
[24] Shi Z Z.Secondary twin variant selection in Mg alloy after a strain-path change[J]. J. Alloys Compd., 2017, 696: 510
[25] Jain J, Zou J, Sinclair C W, et al.Double tensile twinning in a Mg-8Al-0. 5Zn alloy[J]. J. Microsc., 2010, 242: 26
[26] Mu S J, Jonas J J, Gottstein G.Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy[J]. Acta Mater., 2012, 60: 2043
[27] Barnett M R, Stanford N, Ghaderi A, et al.Plastic relaxation of the internal stress induced by twinning[J]. Acta Mater., 2013, 61: 7859
[28] Yu Q, Wang J, Jiang Y Y, et al.Twin-twin interactions in magnesium[J]. Acta Mater., 2014, 77: 28
[29] Yu Q, Wang J, Jiang Y Y, et al.Co-zone {$\bar{1}$012} Twin interaction in magnesium single crystal[J]. Mater. Res. Lett., 2014, 2: 82
[30] Morrow B M, Cerreta E K, McCabe R J, et al. Toward understanding twin-twin interactions in hcp metals: Utilizing multiscale techniques to characterize deformation mechanisms in magnesium[J]. Mater. Sci. Eng., 2014, A613: 365
[31] Sun Q, Zhang X Y, Ren Y, et al. Interfacial structure of {10$\bar{1}$2} twin tip in deformed magnesium alloy [J]. Scr. Mater., 2014, 90-91: 41
[32] Zhang J, Xi G Q, Wan X, et al.The dislocation-twin interaction and evolution of twin boundary in AZ31 Mg alloy[J]. Acta Mater., 2017, 133: 208
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[4] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[5] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[6] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[7] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[8] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[10] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[11] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[12] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[14] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[15] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
No Suggested Reading articles found!