Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 1012-1016    DOI: 10.3724/SP.J.1037.2013.00247
Current Issue | Archive | Adv Search |
COMPRESSIVE CREEP BEHAVIOR OF REACTOR CONTROL ROD MATERIAL Ag-In-Cd ALLOY
XIAO Hongxing, LONG Chongsheng, CHEN Le, LIANG Bo
Science and Technology on Reactor Fuel and Materials Laboratory, NuclearPower Institute of China, Chengdu 610041
Cite this article: 

XIAO Hongxing, LONG Chongsheng, CHEN Le, LIANG Bo. COMPRESSIVE CREEP BEHAVIOR OF REACTOR CONTROL ROD MATERIAL Ag-In-Cd ALLOY. Acta Metall Sin, 2013, 49(8): 1012-1016.

Download:  PDF(605KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ag-In-Cd alloy is widely used as the control rod material in the pressure water reactor (PWR),so it is very important to research the compressive creep behavior for understanding the mechanical property of control rod materials in pile. The compressive creep behavior of as-cast Ag-In-Cd alloy was investigated using a special apparatus at 300—400℃ and under compressive stresses in the range of 12—24 MPa in this work. The stress exponent n and apparent activation energy Qa of the creep process have been calculated as well as the mechanisms of compressive creep behavior have been discussed. The results show that the compressive creep of the alloy increases with the increase of temperature and compressive stress. The relationship between steady creep rate and stress can be expressed in a power law form. The stress exponent n are 2.90, 4.09 and 5.77 at 300, 350 and 400℃ respectively. The apparent activation energy Qa of the creep process are 68.1, 103.7 and 131.6 kJ/mol under compressive stresses of 12, 18 and 24 MPa respectively. Stacking fault is the primary rate controlling mechanism for the Ag-In-Cd alloy at 300—400℃ and the compressive stress range of 12—24 MPa, which was deduced from TEM observation.

Key words:  Ag-In-Cd alloy      compressive creep      stacking fault     
Received:  05 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00247     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/1012

[1] Bourgoin J, Couvreur F, Gosset D, Defoort F, Monchanin M, Thibault X.  J Nucl Mater,1999; 275: 296

[2] Xue S J, Chen Y, Qiu S Y.  Nucl Power Eng, 2004; 25: 522
(薛淑娟, 陈勇, 邱绍宇. 核动力工程, 2004; 25: 522)
[3] Devan K, Riyas A, Alagan M, Mohanakrishnan P.  Ann Nucl Energy, 2008; 35: 1484
[4] Sepold L, Lind T, Pinter C A, Stegmaier U, Steinbruck M,
Stuckert J.  Ann Nucl Energy, 2009; 36: 1349
[5] Amir H F, Saeed S.  Prog Nucl Energy, 2009; 51: 184
[6] Mousavi S S A, Aghanajafi C, Sadoughi S, Sharifloo N.  Ann Nucl Energy,2010; 37: 1659
[7] Dubourg R, Austregesilo H, Bals C, Barrachin M.  Prog Nucl Energy, 2010; 52: 97
[8] Tian S G, Zhang J H, Jin T, Yang H C, Xu Y B, Hu Z Q.  Acta Metall Sin, 1999; 35: 392
(田素贵, 张静华, 金涛, 杨洪才, 徐永波, 胡壮麒. 金属学报, 1999; 35: 392)

[9] Sha Y H, Zuo L, Zhang J H, Xu Y B, Hu Z Q.  Acta Metall Sin, 2011; 37: 1142

(沙玉辉, 左良, 张静华, 徐永波, 胡壮麒. 金属学报, 2011; 37: 1142)


[10] Wei S H, Chen Y G, Tang Y B. Liu H M, Xiao S F, Niu G, Zhang X P, Zhao Y H. Mater Sci Eng, 2008; A492: 20
[11] Huang C, Yu X H, Yamabe M Y, Nakazawa S, Harada H.  Mater Lett, 2003; 57: 3371
[12] Wei S H, Chen Y G, Tang Y B, Liu M, Xiao S F, Zhang X P, Zhao Y H. Trans Nonferrous Met Soc, 2008; 18: 214
[13] Wei X W, Shen B L.  Mater Sci Technol, 2004; 12: 642
(魏晓伟, 沈保罗. 材料科学与工艺, 2004; 12: 642)
[14] Ren W L, Guo J T, Zhou J Y.  Acta Metall Sin, 2002; 38: 908
(任维丽, 郭建亭, 周继扬. 金属学报, 2002; 38: 908)
[15] Fu X W, Yang W L, Zhang L Q.  Acta Metall Sin, 2002; 38: 731
(傅晓伟, 杨王朗, 张来启. 金属学报, 2002; 38: 731)
[16] Pekguleryuz M O, Kaya A A.  Adv Eng Mater, 2003; 5: 866
[17] Zeng M, Xu D F, Shen B L.  Mater Heat Treat, 2008; 37: 17
 (曾明, 徐道芬, 沈保罗. 材料热处理技术, 2008; 37: 17)
[18] Liu X Y, Pan Q L, Lu Z L, Cao S F, He Y B, Li W B.  Acta Metall Sin, 2011; 47: 53
 (刘晓艳, 潘清林, 陆智伦, 曹素芳, 何运斌, 李文斌. 金属学报, 2011; 47: 53)
[19] Xu C M. Guo J T.  Acta Metall Sin, 2003; 39: 809
 (徐春梅, 郭建亭. 金属学报, 2003; 39: 809)
[20] Weetman J.  J Appl Phys, 1957; 28: 362
[21] Coble R L.  J Appl Phys, 1963; 34: 1679
[22] Sherby O D, Burke P M.  Prog Mater Sci, 1968; 13: 325
[23] Cannon W R, Sherby O D.  Metall Trans, 1970; 1: 1030
[24] Luo A A.  Int Mater Rev, 2004; 49: 13
[25] Yan J L, Sun Y S, Xue F.  Acta Metall Sin, 2008; 44: 1354
 (晏井利, 孙扬善, 薛烽. 金属学报, 2008; 44: 1354)
[26] Wei S H, Chen Y G, Tang Y B, Zhang X P, Liu M, Xiao S F, Zhao Y H. Mater Sci Eng, 2009; A508: 59
[1] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[4] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[5] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[6] Yong SU,Sugui TIAN,Huichen YU,Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES[J]. 金属学报, 2015, 51(12): 1472-1480.
[7] AN Xianghai, WU Shiding, ZHANG Zhefeng. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS[J]. 金属学报, 2014, 50(2): 191-201.
[8] XUE Peng, XIAO Bolü, MA Zongyi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS[J]. 金属学报, 2014, 50(2): 245-251.
[9] DENG Liping, YANG Xiaofang, HAN Ke, SUN Zeyuan, LIU Qing. STUDY ON THE MICROSTRUCTURE EVOLUTION OF Cu-Nb COMPOSITE WIRES DURING DEFORMATION AND ANNEALING[J]. 金属学报, 2014, 50(2): 231-237.
[10] XU Ling, CHU Zhaokuang, CUI Chuanyong, GU Yuefeng, SUN Xiaofeng. CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY[J]. 金属学报, 2013, 49(7): 863-870.
[11] QIN Xiaomei CHEN Liqing DI Hongshuang DENG Wei. EFFECT OF DEFORMATION TEMPERATURE ON TENSILE DEFORMATION MECHANISM OF Fe-23Mn-2Al-0.2C TWIP STEEL[J]. 金属学报, 2011, 47(9): 1117-1122.
[12] DONG Minghui HAN Peide ZHANG Caili YANG Yanqing ZHANG Lili LI Hongfei. FIRST-PRINCIPLES STUDY OF STACKING FAULT ENERGY AND DEFORMATION TWIN\par ENERGY IN Al-Mg ALLOYS[J]. 金属学报, 2011, 47(5): 573-577.
[13] HUANG Shuke LIU Jianhui LI Chang'an ZHOU Danchen LI Ning WEN Yuhua. EFFECT OF PRE-DEFORMATION ON STACKING FAULT PROBABILITY AND DAMPING CAPACITY OF Fe-Mn ALLOY[J]. 金属学报, 2009, 45(8): 937-942.
[14] WANG Shuhan LIU Zhenyu ZHANG Weina WANG Guodong. INVESTIGATIONS ON TEMPERATURE DEPENDENCE OF MECHANICAL PROPERTIES AND THE DEFORMATION MECHANISM OF A TWIP STEEL[J]. 金属学报, 2009, 45(5): 573-578.
[15] Shu-Ke Huang; LI Ning. Effect of deep-cooling and measurement temperature on damping capacity of Fe-Mn alloy[J]. 金属学报, 2007, 43(8): 807-812 .
No Suggested Reading articles found!