Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 471-478    DOI: 10.3724/SP.J.1037.2013.00611
Current Issue | Archive | Adv Search |
BINOCULAR STEREO VISION MEASUREMENT RESEARCH FOR SUPERPLASTIC FREE BULGING
MA Pinkui(), SONG Yuquan
Superplastic and Plastic Research Institute, Jilin University, Changchun 130025
Cite this article: 

MA Pinkui, SONG Yuquan. BINOCULAR STEREO VISION MEASUREMENT RESEARCH FOR SUPERPLASTIC FREE BULGING. Acta Metall Sin, 2014, 50(4): 471-478.

Download:  HTML  PDF(2013KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is a significant foundation of superplastic free bulging analytic theory to accurately measure the surface profile and the deformation of each point on surface. Based on an important feature of the profile of the free bulging part which can be depicted as axisymmetric rotating surface, in this study, the measurement of the surface was translated into that of the feature points on the part surface, and the three-dimensional coordinates of these points were measured by the binocular stereo vision system for the first time. Then, through curve fitting, contour surface and geometric parameters were determined, and the strain were characterized through analyzing coordinates change of the feature points and distance change between two adjacent points. The setup and the measuring method of the vision system were introduced, as well as several key steps, such as system model, calibration method, elimination of influence of high temperature, and image processing. The methods were proposed for measuring geometric parameters and deformation of bulging part , and the related experiments were performed.

Key words:  superplasticity      free bulging      binocular stereo vision      measurement     
Received:  02 December 2013     
ZTFLH:  TH871  
Fund: Supported by National Natural Science Foundation of China (Nos.51005099 and 51005098) and Natural Science Foundation of Jilin Province (No.201115015)
About author:  null

马品奎, 男, 1975年生, 副教授, 博士

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00611     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/471

Fig.1  

立体视觉系统构成

Fig.2  

自由胀形测量示意图

Fig.3  

双目立体视觉模型示意图

Fig.4  

实验装置

Feature point Coordinate measured by
vision system (r, h)
Coordinate measured by manual measurement (r, h)
0 (0.00, 71.105) (0.00, 72.34)
1 (16.342, 69.424) (16.82, 69.72)
2 (27.738, 65.548) (28.34, 64.00)
3 (36.385, 56.109) (37.60, 56.32)
4 (43.219, 48.492) (43.88, 48.88)
5 (47.679, 38.752) (48.78, 39.82)
6 (51.152, 30.043) (51.88, 30.82)
7 (53.362, 23.486) (53.22, 22.80)
rmax (53.752, 17.820) (53.46, 17.50)
8 (53.418, 15.278) (53.20, 14.36)
9 (52.725, 7.619) (52.10, 7.00)
10 (50.00, 0.00) (50.00, 0.00)
表1  胀形件轮廓表面被测特征点坐标
[1] Giuliano G, Franchitti S. Int J Mach Tool Manuf, 2007; 47: 471
[2] Jovance F. Int J Mech Sci, 1968; 10: 403
[3] Holt D L. Int J Mech Sci, 1970; 12: 491
[4] Cheng J H. J Mater Process Technol, 1996; 58: 233
[5] Cornfield G C, Johnson R H. Int J Mech Sci, 1970; 12: 479
[6] Jeyasingh J J V, Rao B N. J Mater Process Technol, 2005; 160: 370
[7] Luo Z J, Guo N C, Gong Q Y. J Northwestern Polytech Univ, 1985; 3: 419
(罗子键, 郭乃成, 龚泉源. 西北工业大学学报, 1985; 3: 419)
[8] Tang S, Robbins T L. J Eng Mater Technol, 1974; 96: 77
[9] Enikeev F U, Kruglov A A. Int J Mech Sci, 1995; 37: 473
[10] Cheng J H. Int J Mech Sci, 1994; 36: 981
[11] Song Y Q, Zhao J. Mater Sci Eng, 1986; 84: 111
[12] Song Y Q. Mater Sci Eng, 1987; 86: 179
[13] Song Y Q. Chin J Mech Eng, 1989; 25: 80
(宋玉泉. 机械工程学报, 1989; 25: 80)
[14] Song Y Q, Lian S J. Sci China, 1990; 33A: 1246
[15] Yang H S, Mukhjee A K. Int J Mech Sci, 1992; 34: 283
[16] Brandon J F, Lecoanet H, Oytana C. Int J Mech Sci, 1979; 21: 379
[17] Song Y Q, Zuo W Y. Sci China, 1992; 35A: 122
[18] Song Y Q, Zuo W Y. Sci China, 1992: 35A: 247
[19] Song Y Q, Zuo W Y. Sci China, 1992; 35A: 1388
[20] Hsu C C, Wang W H. Mater Sci Eng, 1996; A205: 247
[21] Huang A, Lowe A, Cardew-Hall M J. J Mater Process Technol, 2001; 112: 136
[22] Song Y Q, Zhao J, Wan S D. Met Sci Technol, 1985; 4(3): 89
(宋玉泉, 赵 军, 万胜狄.金属科学与工艺, 1985; 4(3): 89)
[23] Lin Y Y, Lou X S, Zhang A B. J Exp Mech, 1992; 7: 351
(林有义, 骆晓森, 张爱斌. 实验力学, 1992; 7: 351)
[24] Zhou J H, Fu G L, Chen M H, Zhang Z Y, Zhao D P. J Data Acquis Process, 1996; 11(1): 69
(周建华, 傅桂龙, 陈明和, 张中元, 赵大朋. 数据采集与处理, 1996; 11(1): 69)
[25] Chan K C, Chow K K. Int J Mech Sci, 2002; 44: 1467
[26] Jeyasingh J J V, Kothandaraman G, Sinha P P, Rao B N, Reddy A C. Chennakesava R A. Mater Sci Eng, 2008; A478: 397
[27] Song Y Q, Ma P K, Guan Z P. Acta Metall Sin, 2010; 46: 1
(宋玉泉, 马品奎, 管志平. 金属学报, 2010; 46: 1)
[28] Tsai R Y. IEEE Trans Robot Autom, 1987; 3: 323
[29] Zhang Z Y. IEEE Trans Pattern Anal Mach Intell, 2000; 22: 1330
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[3] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
[4] Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys[J]. 金属学报, 2018, 54(11): 1618-1624.
[5] Jun HUANG,Yongjie ZHANG,Baofeng WANG,Yakun ZHANG,Xin YE,Shikai ZHOU. ESTABLISHMENT OF A FULL SCALE TUNDISH PHYSICAL SIMULATION PLATFORM AND APPLICATION RESEARCH[J]. 金属学报, 2016, 52(11): 1484-1490.
[6] Chao YANG,Jijie WANG,Zongyi MA,Dingrui NI,Mingjie FU,Xiaohua LI,Yuansong ZENG. FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET[J]. 金属学报, 2015, 51(12): 1449-1456.
[7] FU Mingjie, HAN Xiuquan, WU Wei, ZHANG Jianwei. SUPERPLASTICITY RESEARCH OF Ti-23Al-17Nb ALLOY SHEET[J]. 金属学报, 2014, 50(8): 955-961.
[8] GUAN Zhiping, MA Pinkui, SONG Yuquan. ANALYSIS OF FRACTURE DURING SUPERPLASTIC TENSION[J]. 金属学报, 2013, 49(8): 1003-1011.
[9] SHEN Jun, FENG Aihan. RECENT ADVANCES ON MICROSTRUCTURAL CONTROLLING AND HOT FORMING OF Ti2AlNb-BASED ALLOYS[J]. 金属学报, 2013, 49(11): 1286-1294.
[10] HOU Jieshan, ZHOU Lanzhang, GUO Jianting, YUAN Chao. APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF SUPERPLASTIC  BEHAVIOUR IN NiAl ALLOYS[J]. 金属学报, 2013, 49(11): 1333-1338.
[11] CAO Furong DING Hua WANG Zhaodong LI Yinglong GUAN Renguo CUI Jianzhong . QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY[J]. 金属学报, 2012, 48(2): 250-256.
[12] LIU Jie LI Xiangbo WANG Jia. EFFECT OF HYDROSTATIC PRESSURE ON THE CORROSION BEHAVIORS OF TWO LOW ALLOY STEELS[J]. 金属学报, 2011, 47(6): 697-705.
[13] WANG Gang XU Lei WANG Yong ZHENG Zhuo CUI Yuyou YANG Rui. HOT DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF A HIGH-Nb-CONTAINING TiAl BASED ALLOY[J]. 金属学报, 2011, 47(5): 587-593.
[14] KANG Jinwu NIE Gang YU Hailiang LONG Haimin HAO Xiaokun HUANG Tianyou HU Yongyi. THREE DIMENSIONAL DYNAMICAL MEASUREMENT OF DISTORTION OF HEAVY STEEL CASTINGS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2011, 47(5): 535-539.
[15] CAO Furong GUAN Renguo DING Hua LI Yinglong ZHOU Ge CUI Jianzhong. DISLOCATION CREEP IN SUPER–LIGHT α SOLID SOLUTION BASE Mg–6Li–3Zn ALLOY[J]. 金属学报, 2010, 46(6): 715-722.
No Suggested Reading articles found!