|
|
HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY |
Qingjuan WANG( ),Xiao ZHOU,Bo LIANG,Ying ZHOU |
School of Metallurgical and Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China |
|
Cite this article:
Qingjuan WANG,Xiao ZHOU,Bo LIANG,Ying ZHOU. HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY. Acta Metall Sin, 2016, 52(11): 1477-1483.
|
Abstract Cu-Cr-Zr alloy usually applys to the complex environment at high temperature. The mechanical behaviors of alloy are different from the condition of normal temperature. At high temperature, grains and precipitates of ultra-fine grain Cu-Cr-Zr alloy become coarse and it would affect the hot deformation behavior of alloy. To solve the thermal stability of the ultra-fine grain materials, the grain growth mechanism and the driving force of ultra-fine grain materials must be studied, as well as trace elements on the thermal stability mechanism. Tensile properties, microstructure of fracture and fracture mechanism of ultra-fine grain (UFG) Cu-Cr-Zr alloy made by two different treatment methods were studied at the temperature range of room temperature to 600 ℃. The results show that the ultimate tensile strength (UTS) of alloys decreases with increasing temperature. The UTS and elongation of No.1 alloys are about 577.17 MPa and 14.6% at room temperature, respectively. And No.1 alloy start to occur dynamic recrystallization and UTS decreases fast at 300 ℃. The UTS of No.1 alloy are only 59.12 MPa at 600 ℃. The UTS and elongation of No.2 alloy are about 636.71 MPa and 12.1% at room temperature, respectively. The pinning effect by precipitation on grain boundary in the No.2 alloy begins to weaken at 400 ℃. The UTS of No.2 alloy decreases fast and are only 65.20 MPa at 600 ℃. Compared to No.1 alloy, No.2 alloy have better room temperature property and thermal stability. The elongation of all alloys increases with increasing temperature and show superplasticity on elevated temperature. The high temperature tensile fracture morphologies are an intense and deep dimple pattern. The high temperature fracture mechanism is ductile fracture by gathered microporous.
|
Received: 04 March 2016
|
Fund: Supported by National Natural Science Foundation of China (No.51104113) |
[1] | Zhang Y, Li R Q, Xu Q Q, Tian B H, Liu Y, Liu P, Chen X H.Chin J Nonferrous Met, 2014; 24: 745 | [1] | (张毅, 李瑞卿, 许倩倩, 田保红, 刘勇, 刘平, 陈小红. 中国有色金属学报, 2014; 24: 745 ) | [2] | Pan Z Y, Chen J B, Li J F.Trans Nonferrous Met Soc China, 2015; 25: 1206 | [3] | Purcek G, Yanar H, Demirtas M, Alemdag Y, Shangina D V, Dobatkin S V.Mater Sci Eng, 2016; A649: 114 | [4] | Huang F X, Ma J S, Geng Z T, Ning H L, Lingmu Y F, Guo S M, Yu X T, Wang T, Li H, Li X C.Rare Met Mater Eng, 2004; 33: 267 | [4] | (黄福祥, 马莒生, 耿志挺, 宁洪龙, 铃木洋夫, 郭淑梅, 余雪涛, 王涛, 李红, 李鑫成. 稀有金属材料与工程, 2004; 33: 267) | [5] | Huang F X, Ma J S, Ning H L.Scr Mater, 2003; 48: 97 | [6] | Correia J B, Davies H A, Sellars C M.Acta Mater, 1997; 45: 177 | [7] | Hatakeyama M, Toyama T, Yang J. J Nucl Mater#/magtechI#, 2009; 386-388: 852 | [8] | Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov V I.Acta Mater, 2002; 50: 1639 | [9] | Segal V M, Reznikov V I, Drobyshevskiy A E.Russian Metall (Eng Trans), 1981; 1: 99 | [10] | Xie H F, Mi X J, Huang G J, Gao B D, Yin X Q, Li Y F.Rare Met Mater Eng, 2012; 41: 1549 | [10] | (解浩峰, 米绪军, 黄国杰, 高宝东, 尹向前, 李艳锋. 稀有金属材料与工程, 2012; 41: 1549) | [11] | Song D, Ma A B, Jiang J H, Lin P H, Yang D H.Trans Nonferrous Met Soc China, 2009; 19: 1065 | [12] | Abib K, Balanos J A M, Alili B, Bradai D.Mater Charact, 2016; 112: 252 | [13] | Zha M, Li Y J, Mathiesen R, Bjorge R, Roven H V.Trans Nonferrous Met Soc China, 2014; 24: 2301 | [14] | Zhang Y, Volinsky A A, Tran T H, Chai Z, Liu P, Tian B H, Liu Y.Mater Sci Eng, 2016; A650: 248 | [15] | Purcek G, Yanar H, Demirtas M, Alemdag Y, Shangina D V, Dobatkin S V.Mater Sci Eng, 2016; A649: 114 | [16] | Saray O.Mater Sci Eng, 2016; A656: 120 | [17] | Leon K V, Munoz-Morris M A, Morris D G.Mater Sci Eng, 2012; A536: 181 | [18] | Valiev R Z, Krasilnikov N A, Tsenev N K.Mater Sci Eng, 1991; A137: 35 | [19] | Zhu Y T, Lowc T C.Mater Sci Eng, 2000; A291: 46 | [20] | Mishra R S, Valiev R Z, McFadden S X, Islamgaliev R K, Mukherjee A K.Scr Mater, 1999; 40: 1151 | [21] | Shen Y F, Guan R G, Zhao Z Y, Misra R D K.Acta Mater, 2015; 100: 247 | [22] | Cheng J Y, Shen B, Yu F X.Mater Charact, 2013; 81: 68 | [23] | Su J H, Dong Q M, Liu P, Li H J, Kang B X.Mater Sci Technol, 2003; 19: 529 | [24] | Wang Z C, Wang W L, Luo S, Zhu M Y.Chin J Nonferrous Met, 2014; 24: 115 | [24] | (王志成, 王卫领, 罗森, 朱苗勇. 中国有色金属学报, 2014; 24: 115) | [25] | Zhang J S.High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 28 | [25] | (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 28) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|