Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 451-456    DOI: 10.3724/SP.J.1037.2012.00718
Current Issue | Archive | Adv Search |
COOLING RATE CONTROL AND SOLIDIFIED MICROSTRUCTURE OF Al-7.7Ca EUTECTIC ALLOY DURING AERODYNAMIC LEVITATION
ZHANG Long1), ZHANG Shuguang 1), YU Jianding 2), LI Jianguo1)
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
Cite this article: 

ZHANG Long, ZHANG Shuguang,YU Jianding,LI Jianguo. COOLING RATE CONTROL AND SOLIDIFIED MICROSTRUCTURE OF Al-7.7Ca EUTECTIC ALLOY DURING AERODYNAMIC LEVITATION. Acta Metall Sin, 2013, 29(4): 451-456.

Download:  PDF(2229KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The aerodynamic levitation process, which possesses the advantages of containerless solidification, easy control and versatility to materials, is a kind of advanced materials processing technology. How to accurately control the cooling rate during aerodynamic levitation is quite important for studying the processing-structure-property relationship of metallic materials. In this study, the characteristics of laser absorption, thermal radiation and heat convection of an aerodynamically levitated sample were analyzed, and a formula for the control of the cooling rate by means of tuning the laser power has been derived, which is described by:ΔTt=-3[σε(Ts4-Tf4)+h(Ts-T0)]/cρr+α(6Ls-3kΔt)/8cρπr3. By recording temperature-time curves with cooling rates of 9, 49, 98 and 253 ℃/s for the aerodynamically levitated Al-7.7Ca (mass fraction, %) eutectic alloy, the calculated values of cooling rates agree very well with the experimental data, verifying and validating the formula. Also, the microstructure of the aerodynamically levitated Al-7.7Ca eutectic alloy under different cooling rates was examined using OM and SEM. The metallographic observation shows that, under a low cooling rate of 9℃/s, the solidification structure of Al-7.7Ca alloy during aerodynamic levitation exhibits lamellar regular eutectic. With increasing the cooling rate, the undercooling measured from the recorded temperature-time curves increases, resulting in the refinement of the grain size and interlamellar spacing of regular eutectic. Moreover,  there appears granular anomalous eutectic under higher cooling rates of 49, 98 and 253 ℃/s. The volume fraction of anomalous eutectic is increased with increasing the cooling rate. The anomalous eutectic is attributed to the formation during the rapid solidification stage. By measuring the interlamellar spacing of regular eutectic from Al-7.7Ca metallographs, the fitting data of interlamellar spacing and undercooling are in accordance with the classical JH model, showing that the regular eutectic is formed during slow solidification stage after recalescence.

Key words:  aluminum alloy      aerodynamic levitation      cooling rate      solidification,      microstructure     
Received:  06 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00718     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/451

[1] Yu J D, Ishikawa T, Paradis P.  J Crystal Growth, 2006; 292: 480


[2] Bertero G A, Hofmeister W H, Robinson M B, Bayuzick R J.  Metall Trans, 1991; 22A: 2713

[3] Deng K, Ren Z M, Chen J Q, Jiang G C.  Acta Metall Sin, 1999; 35: 739

(邓康, 任忠鸣, 陈坚强, 蒋国昌. 金属学报, 1999; 35: 739)

[4] Oran W A, Berge L H, Parker H W.  Rev Sci Instrum, 1980; 51: 625

[5] Daniele F, Nada B, Majid N, Dimos P.  J Appl Phys, 2011; 109: 093503

[6] Chen L, Luo X H.  Acta Metall Sin, 2007; 43: 769

(陈亮, 罗兴宏. 金属学报, 2007; 43: 769)

[7] Ren L N, Cai E, Feng S.  Acta Metall Sin, 2008; 44: 307

(任利娜, 蔡鳄, 冯生. 金属学报, 2008; 44: 307)

[8] Hu L, Lu X Y, Hou Z M.  Physics, 2007; 36: 944

(胡亮, 鲁晓宇, 侯智敏. 物理, 2007; 36: 944)

[9] Wall J J, Weber R, Kim J, Liaw P K, Choo H.  Mater Sci Eng, 2007; A445-446: 219

[10] Yasutomo A, Paul F P, Tomotsugu A, Takehiko I, Shinichi Y.  Rev Sci Instrum, 2003; 74: 1057

[11] Taniguchi H, Yu J D, Arai Y, Yagi T, Fu D, Itoh M.  Ferroelectrics, 2007; 346: 156

[12] Arai Y, Aoyama T, Yoda S.  Rev Sci Instrum, 2004; 75: 2262

[13] Lee K J, Lee C H, Lee G W, Hwang W S, Lee C H, Yoda S, Cho W S.  Thermochim Acta, 2012; 542: 37

[14] Sakai I, Murai K, Jiang L, Umesaki N, Honma T, Kitano A.  J Electron Spectrosc Relat Phenom, 2005; 144-147: 1011

[15] Jia L M, Xu D M, Guo J J, Bai S H, Wang H H.  Chin J Nonferrous Met, 2010; 20: 667

(贾丽敏, 徐达鸣, 郭景杰, 白世鸿, 王红红. 中国有色金属学报, 2010; 20: 667

[16] Massalski T B, Subramanian P R, Okamoto H, Kacprzak L.  Binary Alloy Phase Diagrams. Materials Park, OH: ASM International, 1990: 1

[17] Yang C L, Yang G C, Lu Y P, Chen J Q, Zhou Y H.  Acta Metall Sin, 2005; 41: 1053

(杨长林, 杨根仓, 卢一平, 陈甲琪, 周尧和. 金属学报, 2005; 41: 1053)

[18] Li J F, Yang G C, Zhou Y H.  Acta Metall Sin, 1998; 34: 113

(李金富, 杨根仓, 周尧和. 金属学报, 1998; 34: 113)

[19] Wang Y G, Kuang H, Huang Q.  Chin J Univ Metrology, 2012; 23: 139

(王玉刚, 匡环, 黄其. 中国计量学院学报, 2012; 23: 139)

[20] Huang Y L, Yang F H, Liang G Y, Su J Y.  Chin J Lasers, 2003; 30: 449

(黄延禄, 杨福华, 梁工英, 苏俊义. 中国激光, 2003; 30: 449)

[21] Wang N, Cao C D, Wei B B.  Acta Metall Sin, 1998; 34: 824

(王楠, 曹崇德, 魏炳波. 金属学报, 1998; 34: 824)

[22] Pu J, Wang J F, Xiao J Z, Gan Z H, Yi H Y.  Chin J Nonferrous Met, 2003; 13: 835

(蒲健, 王敬丰, 肖建中, 甘章华, 易回阳. 中国有色金属学报, 2003; 13: 835)

[23] Wei B, Herlach D M, Feuerbacher B, Sommer F.  Acta Metall Mater, 1993; 41: 1801

[24] Xu Z, Yao S S.  Theories of Material Processing. Beijing: Science Press, 2003: 78

(徐洲, 姚寿山. 材料加工原理. 北京: 科学出版社, 2003: 78)

[25] Jackson K A, Hunt J D.  Trans Met Soc AIME, 1966; 236: 1129
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!