Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1267-1272    DOI: 10.3724/SP.J.1037.2012.00254
Current Issue | Archive | Adv Search |
STRESS CORROSION CRACK INITIATION BEHAVIOR FOR THE X70 PIPELINE STEEL BENEATH A DISBONDED COATING
WANG Zhiying 2, WANG Jianqiu 1, HAN En–hou 1, KE Wei 1, YAN Maocheng 1, ZHANG Junwei 2, LIU Chuwei 2
1. State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051
Cite this article: 

WANG Zhiying WANG Jianqiu HAN En–hou KE Wei YAN Maocheng ZHANG Junwei LIU Chuwei . STRESS CORROSION CRACK INITIATION BEHAVIOR FOR THE X70 PIPELINE STEEL BENEATH A DISBONDED COATING. Acta Metall Sin, 2012, 48(10): 1267-1272.

Download:  PDF(2716KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stress corrosion cracking (SCC) has become one of the main threats for pipelines safe. The crack initiation is the first step for pipeline SCC. The disbonded coating affects the SCC initiation behavior. In the present paper, the effect of cathodic protection potential on SCC initiation for X70 pipeline steel in the NS4 solution beneath a disbonded coating is studied by a cyclic loading test. The SCC initiation situation was observed at the different distances beneath a disbonded coating area by SEM. The results show that the SCC initiation degree lightens with the increase of distance from the disbonded coating area under the condition of –850 mV cathodic protection potential. When the cathodic protection potential increases to –1000 mV, the SCC initiation degree slightly increases with the increase of distance from the disbonded position. But compared with that under the –850 mV, the crack initiation degree under –1000 mV is lower at the corresponding position. It is shown that the coating disbondment reduces the cathodic protection effect, and in order to obtain the same cathodic protection effect the cathodic protection potential should be appropriately moved in an negative way

Key words:  pipeline steel      coating      stress corrosion cracking      crack initiation     
Received:  04 May 2012     
ZTFLH:  TG172.2  
Fund: 

Supported by National Natural Science Foundation of China (No.51025104) and PhD Starting Funds of Liaoning Provincial Science and Technology Department (No.20101048)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00254     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1267

[1] Yan M C, Wang J Q, Han E H. Corros Sci, 2008; 50: 1331

[2] Vuillemin B, Oltra R, Cottis R. Electrochim Acta, 2007; 52: 570

[3] Sridhar N, Dunn D S, Seth M. Corrosion, 2001; 57: 598

[4] Jack T R, Van Boven G, Wilmott M J, Utherby R L S,

Worthingham R G. Mater Perform, 1994; 33(8): 17

[5] Charles E A, Parkins R N. Corrosion, 1995; 51: 518

[6] Beavers J A, Thompson N G. Mater Perform, 1997; 36(4): 13

[7] Li Z F, Mao X H, Gan F X. J Chin Soc Corros Prot, 2000; 20: 3383

(李正复, 毛旭辉, 甘复兴. 中国腐蚀与防护学报, 2000; 20: 338)

[8] Li Z F, Mao X H, Gan F X. J Chin Soc Corros Prot, 2000; 20: 129

(李正复, 毛旭辉, 甘复兴. 中国腐蚀与防护学报, 2000; 20: 129)

[9] Chen X, Li X G, Du C W, Liang P. J Chin Soc Corros Prot, 2010; 30: 35

(陈旭, 李晓刚, 杜翠薇, 梁平. 中国腐蚀与防护学报, 2010; 30: 35)

[10] Song Y Q, Du C W, Zhang X, Li X G. Acta Metall Sin, 2009; 45: 1130

(宋义全, 杜翠薇, 张新, 李晓刚. 金属学报, 2009; 45: 1130)

[11] Guo H, Du C W, Li X G, Zhang X. Corros Sci Prot Technol, 2008; 20: 336

(郭昊, 杜翠薇, 李晓刚, 张新. 腐蚀科学与防护技术, 2008; 20: 336)

[12] Chen X, Li X G, Du C W, Liang P. Acta Metall Sin, 2008; 44: 1431

(陈旭, 李晓刚, 杜翠薇, 梁平. 金属学报, 2008; 44: 1431)

[13] Song Y Q, Du C W, Zhang X, Li X G. Acta Metall Sin, 2006; 42: 305

(宋义全, 杜翠薇, 张 新, 李晓刚. 金属学报, 2006; 42: 305)

[14] Chen X, Du CW, Li X G, Huang Y Z. J Appl Electrochem, 2009; 39: 697

[15] Li Z F, Gan F X, Mao X H. Corros Sci, 2002; 44: 689

[16] Yan M C. Postdoc Report, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007

(闫茂成. 中国科学院金属研究所博士后出站报告, 沈阳, 2007)

[17] Parkins R N. Corrosion’ 2000, Houston, Texas: NACE, 2000: Paper No. 00363(CD)

[18] Liu X, Yang W. Mater Mech Eng, 2002; 26(1): 5

(刘杏, 杨武. 机械工程材料, 2002; 26(1): 5)

[19] Charles E A, Parkins R N. Corrosion, 1995; 51: 518

[20] Yan M C, Wang J Q, Ke W, Han E H. J Chin Soc Corros Prot, 2007; 27: 257

(闫茂成, 王俭秋, 柯伟, 韩恩厚. 中国腐蚀与防护学报, 2007; 27: 257)

[21] Gu B, Luo J L, Mao X. Corrosion, 1999; 55: 96

[22] Qiao L J, Luo J L, Mao X. Corrosion, 1998; 54: 115

[23] Szb´c S, Bakos I. Corros Rew, 2006; 24: 39

[24] Niu L, Cheng Y F. Appl Surf Sci, 2007; 258: 8626

[25] Cheng Y F. Electrochim Acta, 2007; 52: 2661

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[3] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[4] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[5] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[6] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[7] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[8] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[9] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[10] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[11] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[13] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[14] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[15] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
No Suggested Reading articles found!