Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1267-1272    DOI: 10.3724/SP.J.1037.2012.00254
Current Issue | Archive | Adv Search |
STRESS CORROSION CRACK INITIATION BEHAVIOR FOR THE X70 PIPELINE STEEL BENEATH A DISBONDED COATING
WANG Zhiying 2, WANG Jianqiu 1, HAN En–hou 1, KE Wei 1, YAN Maocheng 1, ZHANG Junwei 2, LIU Chuwei 2
1. State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051
Download:  PDF(2716KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stress corrosion cracking (SCC) has become one of the main threats for pipelines safe. The crack initiation is the first step for pipeline SCC. The disbonded coating affects the SCC initiation behavior. In the present paper, the effect of cathodic protection potential on SCC initiation for X70 pipeline steel in the NS4 solution beneath a disbonded coating is studied by a cyclic loading test. The SCC initiation situation was observed at the different distances beneath a disbonded coating area by SEM. The results show that the SCC initiation degree lightens with the increase of distance from the disbonded coating area under the condition of –850 mV cathodic protection potential. When the cathodic protection potential increases to –1000 mV, the SCC initiation degree slightly increases with the increase of distance from the disbonded position. But compared with that under the –850 mV, the crack initiation degree under –1000 mV is lower at the corresponding position. It is shown that the coating disbondment reduces the cathodic protection effect, and in order to obtain the same cathodic protection effect the cathodic protection potential should be appropriately moved in an negative way

Key words:  pipeline steel      coating      stress corrosion cracking      crack initiation     
Received:  04 May 2012     
ZTFLH:  TG172.2  
Fund: 

Supported by National Natural Science Foundation of China (No.51025104) and PhD Starting Funds of Liaoning Provincial Science and Technology Department (No.20101048)

Corresponding Authors:  wang Zhiying     E-mail:  wzhy74@163.com

Cite this article: 

WANG Zhiying WANG Jianqiu HAN En–hou KE Wei YAN Maocheng ZHANG Junwei LIU Chuwei . STRESS CORROSION CRACK INITIATION BEHAVIOR FOR THE X70 PIPELINE STEEL BENEATH A DISBONDED COATING. Acta Metall Sin, 2012, 48(10): 1267-1272.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00254     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1267

[1] Yan M C, Wang J Q, Han E H. Corros Sci, 2008; 50: 1331

[2] Vuillemin B, Oltra R, Cottis R. Electrochim Acta, 2007; 52: 570

[3] Sridhar N, Dunn D S, Seth M. Corrosion, 2001; 57: 598

[4] Jack T R, Van Boven G, Wilmott M J, Utherby R L S,

Worthingham R G. Mater Perform, 1994; 33(8): 17

[5] Charles E A, Parkins R N. Corrosion, 1995; 51: 518

[6] Beavers J A, Thompson N G. Mater Perform, 1997; 36(4): 13

[7] Li Z F, Mao X H, Gan F X. J Chin Soc Corros Prot, 2000; 20: 3383

(李正复, 毛旭辉, 甘复兴. 中国腐蚀与防护学报, 2000; 20: 338)

[8] Li Z F, Mao X H, Gan F X. J Chin Soc Corros Prot, 2000; 20: 129

(李正复, 毛旭辉, 甘复兴. 中国腐蚀与防护学报, 2000; 20: 129)

[9] Chen X, Li X G, Du C W, Liang P. J Chin Soc Corros Prot, 2010; 30: 35

(陈旭, 李晓刚, 杜翠薇, 梁平. 中国腐蚀与防护学报, 2010; 30: 35)

[10] Song Y Q, Du C W, Zhang X, Li X G. Acta Metall Sin, 2009; 45: 1130

(宋义全, 杜翠薇, 张新, 李晓刚. 金属学报, 2009; 45: 1130)

[11] Guo H, Du C W, Li X G, Zhang X. Corros Sci Prot Technol, 2008; 20: 336

(郭昊, 杜翠薇, 李晓刚, 张新. 腐蚀科学与防护技术, 2008; 20: 336)

[12] Chen X, Li X G, Du C W, Liang P. Acta Metall Sin, 2008; 44: 1431

(陈旭, 李晓刚, 杜翠薇, 梁平. 金属学报, 2008; 44: 1431)

[13] Song Y Q, Du C W, Zhang X, Li X G. Acta Metall Sin, 2006; 42: 305

(宋义全, 杜翠薇, 张 新, 李晓刚. 金属学报, 2006; 42: 305)

[14] Chen X, Du CW, Li X G, Huang Y Z. J Appl Electrochem, 2009; 39: 697

[15] Li Z F, Gan F X, Mao X H. Corros Sci, 2002; 44: 689

[16] Yan M C. Postdoc Report, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007

(闫茂成. 中国科学院金属研究所博士后出站报告, 沈阳, 2007)

[17] Parkins R N. Corrosion’ 2000, Houston, Texas: NACE, 2000: Paper No. 00363(CD)

[18] Liu X, Yang W. Mater Mech Eng, 2002; 26(1): 5

(刘杏, 杨武. 机械工程材料, 2002; 26(1): 5)

[19] Charles E A, Parkins R N. Corrosion, 1995; 51: 518

[20] Yan M C, Wang J Q, Ke W, Han E H. J Chin Soc Corros Prot, 2007; 27: 257

(闫茂成, 王俭秋, 柯伟, 韩恩厚. 中国腐蚀与防护学报, 2007; 27: 257)

[21] Gu B, Luo J L, Mao X. Corrosion, 1999; 55: 96

[22] Qiao L J, Luo J L, Mao X. Corrosion, 1998; 54: 115

[23] Szb´c S, Bakos I. Corros Rew, 2006; 24: 39

[24] Niu L, Cheng Y F. Appl Surf Sci, 2007; 258: 8626

[25] Cheng Y F. Electrochim Acta, 2007; 52: 2661

[1] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[2] WU Yucheng, GAO Zhiqiang, XU Guangqing, LIU Jiaqin, XUAN Haicheng, LIU Youhao, YI Xiaofei, CHEN Jingwu, HAN Peide. Current Status and Challenges in Corrosion and Protection Strategies for Sintered NdFeB Magnets[J]. 金属学报, 2021, 57(2): 171-181.
[3] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[4] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[5] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[6] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[7] ZHANG Yu, LOU Liyan, XU Qinglong, LI Yan, LI Changjiu, LI Chengxin. Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding[J]. 金属学报, 2020, 56(11): 1530-1540.
[8] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[9] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[10] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[11] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[12] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[13] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[14] Wenqin WANG, Zhaoman WANG, Yulong LI, De WANG, Miao LI, Qing CHEN. Wear Behavior of Fe-WC/Metal Double Layer Coatings Fabricated by Resistance Seam Weld Method[J]. 金属学报, 2019, 55(4): 537-546.
[15] Shasha YANG,Feng YANG,Minghui CHEN,Yunsong NIU,Shenglong ZHU,Fuhui WANG. Effect of Nitrogen Doping on Microstructure and Wear Resistance of Tantalum Coatings Deposited by Direct Current Magnetron Sputtering[J]. 金属学报, 2019, 55(3): 308-316.
No Suggested Reading articles found!