Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1260-1266    DOI: 10.3724/SP.J.1037.2012.00258
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER
PENG Xin 1, WANG Jia 1,2, SHAN Chuan 1, WANG Haijie 1, LIU Zaijian 1, ZOU Yan 3
1.The College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100
2. State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016
3. Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology, Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266100
Cite this article: 

PENG Xin WANG Jia SHAN Chuan WANG Haijie LIU Zaijian ZOU Yan. CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER. Acta Metall Sin, 2012, 48(10): 1260-1266.

Download:  PDF(1020KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The rust/metal structure is one of the multiphase and multiple interface complex systems. The corrosion under rust is the uppermost and longest form of metallic corrosion evolution process. It is difficult to accurately determine the electrochemical parameters because the existence of rust complicates the electrochemical corrosion process. Based on the result of the previous studies of quiescent seawater, the weight–loss method and different electrochemical tests such as polarization curves (PC), electrochemical impedance spectra (EIS) and linear polarization resistance (LPR) were carried out to study the corrosion behavior of A3 carbon steel immersed in flowing seawater for about 280 d. After very short immersing time, there is a thin yellow rust layer on carbon steel, but as time prolonged, the yellow corrosion products are rushed away quickly, and a tense black rust layer cover about the whole electrode. The corrosion rate obtained by weight–loss method show a steady decline and keep stable after about 84 d, but it is higher than that of the static state system data. The cathodic polarization curves show an obvious reduction current peak at about −950 mV, which makes a remarkable overestimating of the cathodic corrosion current. Polarization resistance (Rp), determined by LPR and EIS, increases during the merely short–initial immersion period, then, it decreases gradually with immersion time. This means that the corrosion rate determined by electrochemical tests shows an another pattern compared with the weight–loss result. After a very short immersion time (about 14 d), there is a remarkable deviation between the weight–loss and electrochemical test results, and the longer immersed the greater of this deviation is. So no matter in static state or flowing seawater, electrochemical methods can not get an accurate corrosion rate of carbon steel. And reliable electrochemical measurement and analysis for rusted steel need much more attention.

Key words:  carbon steel      flowing seawater      rust layer      corrosion rate      deviation     
Received:  08 May 2012     
ZTFLH:  O646  
Fund: 

Supported by National Natural Science Foundation of China (No.50971118)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00258     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1260

[1] Javaherdashti R. Anti corros Methods Mater, 2000; 47(1): 30

[2] Zheng W L, Yu Q. Environment Sensitive Fraction of Steel. Beijing: Chemical Industry Press, 1988: 12

(郑文龙, 于 青. 钢的环境敏感断裂. 北京: 化学工业出版社, 1988: 12)

[3] Zhu Y L, Zhou J, Xiong C J, Ma Z F, Liu Z S. PetrolChem Equip, 2002; 31(1): 14

(朱岳麟, 周健, 熊常健, 马志锋, 刘中生. 石油化工设备, 2002; 31 (1): 14)

[4] Yan M, Huang G Q. Marine Sci, 2005; 29(7): 73

(颜 民, 黄桂桥. 海洋科学, 2005; 29(7): 73)

[5] Cao C N. Corrosion of Chinese Materials in Nature Environment. Beijing: Chemical Industry Press, 2005: 1

(曹楚南. 中国材料的自然环境腐蚀. 北京: 化学工业出版社, 2005: 1)

[6] Xia L T, Huang G Q, Ding L P. Res Studies Foundry Equip, 2002; 4: 14

(夏兰廷, 黄桂桥, 丁路平. 铸造设备研究, 2002; 4: 14)

[7] Huang G Q. Corros Sci Prot Technol, 2001; 13: 81

(黄桂桥. 腐蚀科学与防护技术, 2001; 13: 81)

[8] Qiu Y B, Qi G T, Guo Z H. China Offshore Oil Gas, 1996;8(5): 18

 (邱于兵, 齐公台, 郭稚弧. 中国海上油气, 1996; 8(5): 18)

[9] Zhang W, Wang J, Li Y N, Wang W. Acta Phys Chim Sin, 2010; 26: 2941

(张 伟, 王佳, 李玉楠, 王伟. 物理化学学报, 2010; 26: 2941)

[10] Bousselmi L, Fiaud C, Tribollet B, Triki E. Electrochim Acta, 1999; 44: 4357

[11] John D G, Searosn P C, Dawson J L. Br Corros J, 1981; 16(2): 102

[12] Liu G Z, Wang J M, Zhang J Q, Cao C N. Acta Metall Sin, 2011; 47: 1600

(刘光洲, 王建明, 张鉴清, 曹楚南. 金属学报, 2011; 47: 1600)

[13] Zhang J B, Wang J, Wang Y H. Acta Phys Chim Sin, 2005; 21: 993

(张际标, 王佳, 王燕华. 物理化学学报, 2005; 21: 993)

[14] Gonz´alez J A, Miranda J M, Otero E, Feliu S. Corros Sci, 2007; 49: 436

[15] Zou Y, Zheng Y Y, Wang Y H, Wang J. Acta Metall Sin, 2010; 46: 123

(邹妍, 郑莹莹, 王燕华, 王佳. 金属学报, 2010; 46: 123)

[16] Zou Y, Wang J, Zheng Y Y. Acta Phys Chim Sin, 2010;26: 2361

 (邹妍, 王佳, 郑莹莹. 物理化学学报, 2010; 26: 2361)

[17] Zou Y, Wang J, Zheng Y Y. Corros Sci, 2011; 53: 208

[18] Antony H, Perrin S, Dillmann P, Legrand L, Chauss´e A. Electrochim Acta, 2007; 52: 7754

[19] Andrade C, Keddam M, N´ovoa X R, P´erez M C, Rangel C M, Takenouti H. Electrochim Acta, 2001; 46: 3905

[20] Nov´ak P, Mal´aR, Joska L. Cement Concrete Res, 2001; 31: 589

[21] Copson H R. Corrosion, 1960; 16: 130

[22] Shalaby H M, Attari S, Riad W T. Corrosion, 1992; 48: 206

[23] Nesic S, Solvi G T, Enerhaug J. Corrosion, 1995; 51: 773

[24] Huang G Q. Corros Sci Prot Technol, 2001; 22: 384

(黄桂桥. 腐蚀科学与防护技术, 2001; 22: 384)

[25] Martinez S. Mater Chem Phys, 2002; 77: 97

[26] Stern M, Geary A L. J Electrochem Soc, 1957; 104: 56

[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[3] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[6] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[7] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[8] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[9] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[10] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[11] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[12] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[13] Runzhi QIN, Yanxia DU, Minxu LU, Li OU, Haiming SUN. Study of Interference Parameters Variation Regularity and Corrosion Behavior of X80 Steel in Guangdong Soil Under High Voltage Direct Current Interference[J]. 金属学报, 2018, 54(6): 886-894.
[14] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[15] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
No Suggested Reading articles found!