Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1273-1280    DOI: 10.3724/SP.J.1037.2012.00229
Current Issue | Archive | Adv Search |
WAFER LEVEL ELECTRODEPOSION OF Fe–Ni NOVEL UBM FILMS
ZHANG Hao 1, WU Di 1, ZHANG Li 2, DUAN Zhenzhen 2, LAI Chi–Ming 2, LIU Zhiquan 1
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Jiangyin Changdian Advanced Packaging Co., Ltd., Jiangyin 214431
Cite this article: 

ZHANG Hao WU Di ZHANG Li DUAN Zhenzhen LAI Chi–Ming LIU Zhiquan . WAFER LEVEL ELECTRODEPOSION OF Fe–Ni NOVEL UBM FILMS. Acta Metall Sin, 2012, 48(10): 1273-1280.

Download:  PDF(1118KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Using customized wafer electroplating system, the electrodeposition process of Fe–Ni under bump metallization (UBM) thin film has been developed by modified Watts bath. The major factors which can affect the Fe content in the final UBM films, including the concentration of Fe2+, electrodeposition temperature and current density, were investigated systematically. The growth rate of Fe–Ni film under different electroplating conditions was measured in order to provide a reference for actual production. The microstructure and morphology of obtained Fe–Ni films were characterized by XRD and TEM. Multiple kinds of analytical methods including titration and inductive coupled plasma emission spectrometer (ICP) were used to monitor the content change of bath component under working or storage conditions. Regulations were put forward to maintain the bath daily including the keeping of the main salt content and the inhibition of Fe3+ concentration.

Key words:  Fe-Ni alloy      electrodeposition      under bump metallization (UBM)      wafer level packaging     
Received:  25 April 2012     
Fund: 

Supported by Major National Science and Technology Program of China (No.2011ZX02602), National Basic Research Program of China (No.2010CB631006) and Shenyang Science and Technology Project (No.F11–264–1–65)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00229     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1273

[1] O’Donnell T, Wang N N, Kulkarni S, Meere R, Rhen F M F, Roy S, O’Mathuna S C. J Magn Magn Mater, 2010; 322: 1690

[2] Esmaili S, Bahrololoom M E, Kavanagh K L. Mater Charact, 2011; 62: 204

[3] Leith S D, Ramli S, Schwartz D T. J Electrochem Soc, 1999; 146: 1431

[4] Koo B, Yoo B. Surf Coat Technol, 2010; 205: 740

[5] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55

[6] Yan Y F, Wang W L, Chen G F. Pb–free Solders in SMT. Beijing: Publishing House of Electronics Industry, 2010: 102

(闫焉服, 王文利, 陈冠方. 电子装联中的无铅焊料. 北京: 电子工业出版社, 2010: 102)

[7] Dariavach N, Callahan P, Liang J, Fournelle R. J Electron Mater, 2006; 35: 1581

[8] Zhu Q S, Guo J J, Shang P J, Wang Z G, Shang J K. Adv Eng Mater, 2010; 12: 497

[9] Guo J J, Zhang L, Xian A P, Shang J K. J Mater Sci Technol, 2007; 23: 811

[10] Zhang H, Zhang L, Duan Z Z, Liu Z Q. Sci J Microelectron, 2012; 2: 13

 (张昊, 张黎, 段珍珍, 刘志权. 微电子期刊, 2012; 2: 13)

[11] Huang Z X, Wu C S. Theory of Electroplating. Beijing: China Machine Press, 1982: 5

 (黄子勋, 吴纯素. 电镀理论. 北京:机械工业出版社, 1982: 5)

[12] Chen T Y. Electroplating of Nickel Alloy. Beijing: Chemical Industry Press, 2007: 18

 (陈天玉. 镀镍合金.北京: 化学工业出版社, 2007: 18)

[13] Han P X. Environ Sci Technol, 2006; 29: 42

(韩平学. 环境科学与技术, 2006; 29: 42)

[14] Chen T Y. Trouble Settlement and Actual Samples of Nickel Plating. Beijing: Chemical Industry Press, 2010: 19

(陈天玉. 镀镍故障处理及实例. 北京: 化学工业出版社, 2010: 19)

[15] Li P, Lu L, Liu T C, Sun K, Lu Z C, Lu Y P. J Funct Mater, 2001; 38: 32

(李鹏, 卢琳, 刘天成, 孙克, 卢志超, 卢燕平. 功能材料, 2001; 38: 32)

[16] Liu T C, Lu Z C, Li D R, Lu Y P, Sun K, Zhou S X. J Univ Sci Technol Beijing, 2006; 28: 298

(刘天成, 卢志超, 李德仁, 卢燕平, 孙克, 周少雄. 北京科技大学学报, 2006; 28: 298)

[17] Han Y, Wang P, Wang B Y, Qin Q X. Plat Finish, 1997; 19: 8

(韩勇, 王萍, 王宝玉, 覃奇贤. 电镀与精饰, 1997; 19: 8)

[18] Tabakovic I, Inturi V, Thurn J, Kief M. Electrochim Acta, 2010; 55: 6749

[19] Su X H, Qiang C W. Bull Mater Sci, 2012; 35: 183

[20] Rousse C, Fricoteaux P. J Mater Sci, 2011; 46: 6046

[21] Grimmett D L, Schwartz M, Nobe K. J Electrochem Soc, 1993; 140: 973

[22] Kieling V C. Surf Coat Technol, 1997; 96: 135

[23] Li P, Liu T C, Sun K, Lu Y P, Lu Z C. Electroplat Finish, 2005; 24: 6

(李 鹏, 刘天成, 孙克, 卢燕平, 卢志超. 电镀与涂饰, 2005; 24: 6)

[24] Tabakovic I, Inturi V, Thurn J, Kief M. Electrochim Acta, 2011; 56: 2616

[25] Chen T Y. Technological Foundation of Nickel Plating. Beijing: Chemical Industry Press, 2011: 37

(陈天玉. 镀镍工艺基础. 北京: 化学工业出版社, 2011: 37)

[1] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[2] GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt[J]. 金属学报, 2022, 58(10): 1292-1304.
[3] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[4] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[5] Zhao CHENG, Shuai JIN, Lei LU. Effect of Electrolyte Temperature on Microstructures of Direct-Current Electrodeposited Nanotwinned Cu[J]. 金属学报, 2018, 54(3): 428-434.
[6] Tingting ZHAO, Zhixin KANG, Xiayu MA. Fabricating Superhydrophobic Copper Meshes by One-Step Electrodeposition Method and Its Anti-Corrosion and Oil-Water Separation Abilities[J]. 金属学报, 2018, 54(1): 109-117.
[7] Shuai JIN,Zhao CHENG,Qingsong PAN,Lei LU. EFFECT OF ELECTROLYTE ADDITIVE CONCEN-TRATION ON MICROSTRUCTURE OF DIRECT-CURRENT ELECTRODEPOSITED NANOTWINNED Cu[J]. 金属学报, 2016, 52(8): 973-979.
[8] SHAN Haiquan, ZHANG Yuefei, MAO Shengcheng, ZHANG Ze. ELECTRON MICROSCOPY STUDY OF FIVE-FOLD TWINS IN ELECTRODEPOSITED NANO-TWIN Ni[J]. 金属学报, 2014, 50(3): 305-312.
[9] LI Xuliang, ZHANG Yingchun, JIANG Fan, WANG Lili, LIU Yanhong, SUN Ningbo. EFFECTS OF CURRENT DENSITY ON MICROSTRUCTURE OF W COATING ON V-4Cr-4Ti ALLOY BY ELECTRODEPOSITION[J]. 金属学报, 2013, 49(6): 745-750.
[10] NIU Yunsong, WEI Jie, ZHAO Jian, HU Jiaxiu, YU Zhiming. PREPARATION AND PROPERTIES OF NANOSIZED MUL-TILAYERED Ni COATINGS BY ULTRASOUND-ASSISTED ELECTRODEPOSITION[J]. 金属学报, 2013, 49(12): 1617-1622.
[11] LONG Qiong, ZHONG Yunbo, LI Fu, LIU Chunmei, ZHOU Junfeng, FAN Lijun, LI Mingjie. EFFECT OF STATIC MAGNETIC FIELD ON THE MORPHOLOGY AND Si CONTENT OF Fe-Si COMPOSITE COATING[J]. 金属学报, 2013, 49(10): 1201-1210.
[12] CHENG Yuhao ZHANG Yuefei MAO Shengcheng HAN Xiaodong ZHANG Ze. EFFECT OF TEMPERATURE ON MICROSTRUCTURE AND NANOINDENTATION MECHANICAL PROPERTIES OF ELECTRODEPOSITED NANO-TWINNED Ni[J]. 金属学报, 2012, 48(11): 1342-1348.
[13] LI Wenchuan CAI Jun LING Guoping. Al-Cr COATINGS PREPARED BY DIFFUSION AT LOW TEMPERATURE AND ITS PHASE CHARACTERIZATION[J]. 金属学报, 2011, 47(2): 231-235.
[14] FENG Zhourong SHEN Jun WANG Wei MIN Zhixian FU Hengzhi. EFFECTS OF PULLING RATE ON MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Fe-4.2Ni ALLOY IN DIFFUSION REGIME[J]. 金属学报, 2010, 46(3): 311-317.
[15] ;. THE EFFECT OF MECHANICAL ATTRITION ON THE GRAIN GROWTH OF ELECTRODEPOSOTION Ni COATINGS[J]. 金属学报, 2008, 44(6): 751-756 .
No Suggested Reading articles found!