Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1074-1080    DOI: 10.3724/SP.J.1037.2012.00210
论文 Current Issue | Archive | Adv Search |
REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL
REN Yongqiang, XIE Zhenjia, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

REN Yongqiang XIE Zhenjia SHANG Chengjia. REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL. Acta Metall Sin, 2012, 48(9): 1074-1080.

Download:  PDF(3395KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The development of high performance steels needs to realize the combination of high strength, high plasticity and high toughness. Multiphase microstructure which contains a specific proportion of retained austenite is conductive to enhance the toughness and plasticity of the steel. Making use of the quenching+intercritical reheating-quenching and partitioning (IQ$\&$P) process, a multiphase microstructure which was composed of intercritical ferrite, martensite and well distributed retained austenite (primarily distributed in the prior austenitic grain boundary and the phase boundary) can be obtained in the 0.23C-1.8Mn-1.35Si steel. By means of SEM, XRD and EBSD, microstructures of the steel in different heat treatment stages were characterized. The results indicated that the obtention of the retained austenite was mainly dependent on the following two stages: the first one is the enrichment of the carbon and manganese in the reversed austenite during the intercritical reheating process; the second stage is the secondary enrichment of carbon in retained austenite during the following quenching and partitioning process. After the two stages of element enrichment treatment, more than 10% volume fraction of retained austenite was obtained, and the second stage of treatment plays an important role in the formation and stabilization of the metastable austenite. Due to the strengthening and toughening effect of the widely distrubuted retained austenite, this kind of steel obtained a continuous work hardening ability, and thus achieved a good combination of strength and plasticity. Test results indicated that steel treated by the IQ&P process shows excellent comprehensive mechanical properties: the product of strength and elongation is greater than 26 GPa?%, the yield strength and tensile stength is more than 600 and 900 MPa respectively, the uniform elongationg is above 16\%, and the half thickness size impact toughness at room temperature reaches to 39 J.
Key words:  low carbon steel      retained austenite      martensite      intercritical ferrite      TRIP effect     
Received:  17 April 2012     
ZTFLH: 

TG113

 
Fund: 

Supported by National Basic Research Program of China (No.2010CB630801)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00210     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1074

[1] McFarlan W H. US Pat, 3378360, 1968

[2] Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311

[3] Matsumura O, Sakuma Y, Takechi H. Scr Metall, 1987; 21: 1301

[4] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1987; 27: 570

[5] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1992; 32: 1014

[6] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775

[7] Gr¨assel O, Frommeyer G. Mater Sci Technol, 1998; 14: 1213

[8] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319–321: 246

[9] Barnett M R. Mater Sci Eng, 2007; A464: 1

[10] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611

[11] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426–432: 1089

[12] Sakuma Y, Matsumura O, Takechi H. Metall Mater Trans, 1991; A22: 489

[13] Herrera C, Ponge D, Raabe D. Acta Mater, 2011; 59: 4653

[14] Girault E, Jacques P, Harlet Ph, Mols K, Van Humbeeck J, Aernoudt E, Delannay F. Mater Charact, 1998; 40: 111

[15] Ray A, Dhua S K. Mater Charact, 1996; 37: 1

[16] Speer J G, Streicher A M, Matlock D K, Rizzo F C, Krauss G. In: Damm E B, Merwin M eds., Austenite Formation and Decomposition, Warrendale: TMS, 2003: 505

[17] Edmonds DV, He K, Rizzo F C, De CoomanB C,Matlock D K, Speer J G. Mater Sci Eng, 2006; A438–440: 25

[18] De Cooman B C, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels. Gyeongju: The Korean Institute of Metals and Materials, 2006: 798

[19] Streicher A M, Speer J G, Matlock D K, De Cooman B C. In: Speer J G ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale: AIST, 2004: 51

[20] Speer J G, Edmonds D V, Rizzo F C, Matlock D K. Opin Curr Solid State Mater Sci, 2004; 8: 219

[21] Sugimoto K, Tsunezawa M, Hojo T, Ikeda S. ISIJ Int, 2004; 44: 1608

[22] Raabe D, Ponge D, Dmitrieva O, Sander B. Scr Mater, 2009; 60: 1141

[23] Shi J, Sun X J, Wang M Q, Hui W J, Dong H, Cao W Q. Scr Mater, 2010; 63: 815

[24] Wang C Y, Shi J, CaoWQ, Dong H. Mater Sci Eng, 2010; A527: 3442

[25] Li H Y, Lu X W, Wu X C, Min Y A, Jin X J. Mater Sci Eng, 2010; A527: 6255

[26] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; A40: 46

[27] Mukherjee M, Mohanty O N, Hashimoto S, Hojo T, Sugimoto K. ISIJ Int, 2006; 46: 316

[28] Fan X. Metallic X–ray Physics. Beijing: Mechanical Industry Press, 1989: 159

(范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

[29] Sugimoto K, Usui N, Kobayashi M, Hashimoto S. ISIJ Int, 1992; 32: 1311

[30] Cullity B D. Elements of X–ray Diffraction. Massachusetts: Addison–Wesley, 1978: 359

[31] Santofimia M J, Nguyen–Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J. Mater Sci Eng, 2010; A527: 6429

[32] Thomas G A, Speer J G, Matlock D K. Metall Mater Trans, 2011; 42A: 3652

[33] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 489

(张 柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董 瀚. 金属学报, 2011; 47: 489)

[34] Santofimia M J, Zhao L, Petrov R, Kwakernaak C, Sloof W G, Sietsma J. Acta Mater, 2011; 59: 6059

[35] Nouri A, Saghafian H, Kheirandish Sh. J Iron Steel Res Int, 2010; 17(5): 44

[36] Speich G R, Demarest V A, Miller R L. Metall Mater Trans, 1981; 12A: 1419

[37] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2011; 42A: 3620
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[6] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[7] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[8] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[9] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[10] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[13] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[14] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[15] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
No Suggested Reading articles found!