Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1074-1080    DOI: 10.3724/SP.J.1037.2012.00210
论文 Current Issue | Archive | Adv Search |
REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL
REN Yongqiang, XIE Zhenjia, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(3395KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The development of high performance steels needs to realize the combination of high strength, high plasticity and high toughness. Multiphase microstructure which contains a specific proportion of retained austenite is conductive to enhance the toughness and plasticity of the steel. Making use of the quenching+intercritical reheating-quenching and partitioning (IQ$\&$P) process, a multiphase microstructure which was composed of intercritical ferrite, martensite and well distributed retained austenite (primarily distributed in the prior austenitic grain boundary and the phase boundary) can be obtained in the 0.23C-1.8Mn-1.35Si steel. By means of SEM, XRD and EBSD, microstructures of the steel in different heat treatment stages were characterized. The results indicated that the obtention of the retained austenite was mainly dependent on the following two stages: the first one is the enrichment of the carbon and manganese in the reversed austenite during the intercritical reheating process; the second stage is the secondary enrichment of carbon in retained austenite during the following quenching and partitioning process. After the two stages of element enrichment treatment, more than 10% volume fraction of retained austenite was obtained, and the second stage of treatment plays an important role in the formation and stabilization of the metastable austenite. Due to the strengthening and toughening effect of the widely distrubuted retained austenite, this kind of steel obtained a continuous work hardening ability, and thus achieved a good combination of strength and plasticity. Test results indicated that steel treated by the IQ&P process shows excellent comprehensive mechanical properties: the product of strength and elongation is greater than 26 GPa?%, the yield strength and tensile stength is more than 600 and 900 MPa respectively, the uniform elongationg is above 16\%, and the half thickness size impact toughness at room temperature reaches to 39 J.
Key words:  low carbon steel      retained austenite      martensite      intercritical ferrite      TRIP effect     
Received:  17 April 2012     
ZTFLH: 

TG113

 
Fund: 

Supported by National Basic Research Program of China (No.2010CB630801)

Corresponding Authors:  Chengjia Shang     E-mail:  cjshang@ustb.edu.cn

Cite this article: 

REN Yongqiang XIE Zhenjia SHANG Chengjia. REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL. Acta Metall Sin, 2012, 48(9): 1074-1080.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00210     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1074

[1] McFarlan W H. US Pat, 3378360, 1968

[2] Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311

[3] Matsumura O, Sakuma Y, Takechi H. Scr Metall, 1987; 21: 1301

[4] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1987; 27: 570

[5] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1992; 32: 1014

[6] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775

[7] Gr¨assel O, Frommeyer G. Mater Sci Technol, 1998; 14: 1213

[8] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319–321: 246

[9] Barnett M R. Mater Sci Eng, 2007; A464: 1

[10] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611

[11] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426–432: 1089

[12] Sakuma Y, Matsumura O, Takechi H. Metall Mater Trans, 1991; A22: 489

[13] Herrera C, Ponge D, Raabe D. Acta Mater, 2011; 59: 4653

[14] Girault E, Jacques P, Harlet Ph, Mols K, Van Humbeeck J, Aernoudt E, Delannay F. Mater Charact, 1998; 40: 111

[15] Ray A, Dhua S K. Mater Charact, 1996; 37: 1

[16] Speer J G, Streicher A M, Matlock D K, Rizzo F C, Krauss G. In: Damm E B, Merwin M eds., Austenite Formation and Decomposition, Warrendale: TMS, 2003: 505

[17] Edmonds DV, He K, Rizzo F C, De CoomanB C,Matlock D K, Speer J G. Mater Sci Eng, 2006; A438–440: 25

[18] De Cooman B C, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels. Gyeongju: The Korean Institute of Metals and Materials, 2006: 798

[19] Streicher A M, Speer J G, Matlock D K, De Cooman B C. In: Speer J G ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale: AIST, 2004: 51

[20] Speer J G, Edmonds D V, Rizzo F C, Matlock D K. Opin Curr Solid State Mater Sci, 2004; 8: 219

[21] Sugimoto K, Tsunezawa M, Hojo T, Ikeda S. ISIJ Int, 2004; 44: 1608

[22] Raabe D, Ponge D, Dmitrieva O, Sander B. Scr Mater, 2009; 60: 1141

[23] Shi J, Sun X J, Wang M Q, Hui W J, Dong H, Cao W Q. Scr Mater, 2010; 63: 815

[24] Wang C Y, Shi J, CaoWQ, Dong H. Mater Sci Eng, 2010; A527: 3442

[25] Li H Y, Lu X W, Wu X C, Min Y A, Jin X J. Mater Sci Eng, 2010; A527: 6255

[26] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; A40: 46

[27] Mukherjee M, Mohanty O N, Hashimoto S, Hojo T, Sugimoto K. ISIJ Int, 2006; 46: 316

[28] Fan X. Metallic X–ray Physics. Beijing: Mechanical Industry Press, 1989: 159

(范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

[29] Sugimoto K, Usui N, Kobayashi M, Hashimoto S. ISIJ Int, 1992; 32: 1311

[30] Cullity B D. Elements of X–ray Diffraction. Massachusetts: Addison–Wesley, 1978: 359

[31] Santofimia M J, Nguyen–Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J. Mater Sci Eng, 2010; A527: 6429

[32] Thomas G A, Speer J G, Matlock D K. Metall Mater Trans, 2011; 42A: 3652

[33] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 489

(张 柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董 瀚. 金属学报, 2011; 47: 489)

[34] Santofimia M J, Zhao L, Petrov R, Kwakernaak C, Sloof W G, Sietsma J. Acta Mater, 2011; 59: 6059

[35] Nouri A, Saghafian H, Kheirandish Sh. J Iron Steel Res Int, 2010; 17(5): 44

[36] Speich G R, Demarest V A, Miller R L. Metall Mater Trans, 1981; 12A: 1419

[37] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2011; 42A: 3620
[1] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[2] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[3] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[4] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[5] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[6] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[7] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[8] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[9] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[10] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[11] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[12] Feng YANG, Haiwen LUO, Han DONG. Effects of Intercritical Annealing Temperature on the Tensile Behavior of Cold Rolled 7Mn Steel and the Constitutive Modeling[J]. 金属学报, 2018, 54(6): 859-867.
[13] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
[14] Kai ZHU, Cuilan WU, Pan XIE, Mei HAN, Yuanrui LIU, Xiangge ZHANG, Jianghua CHEN. Microstructure and Mechanical Properties of an Austenite/Ferrite Laminate Structured High-Manganese Steel[J]. 金属学报, 2018, 54(10): 1387-1398.
[15] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
No Suggested Reading articles found!