Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1067-1073    DOI: 10.3724/SP.J.1037.2012.00094
论文 Current Issue | Archive | Adv Search |
EFFECT OF VC PARTICLES ON THE STRAIN HARDENING BEHAVIOR OF TWIP STEEL
ZHANG Zhibo, LIU Zhenyu, ZHANG Weina
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

ZHANG Zhibo LIU Zhenyu ZHANG Weina. EFFECT OF VC PARTICLES ON THE STRAIN HARDENING BEHAVIOR OF TWIP STEEL. Acta Metall Sin, 2012, 48(9): 1067-1073.

Download:  PDF(3174KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The twinning induced plasticity (TWIP) steel has received more and more attention for its outstanding combination of good strength and high ductile. It has been proposed that deformation twinning plays an important role in controlling the deformation behavior. The formation of deformation twins is influenced by deformation temperature, strain rate, pre-deformation, grain size and precipitates. The generation of deformation twins in austenitic steel is closely related to precipitates. However, the relationship between strain hardening rate and precipitates in TWIP steels has not been clarified. In this work, the effect of vanadium carbides on the microstructure, strain hardening behavior and mechanical properties of Fe-Mn-C TWIP steel was investigated. The specimens of Fe22Mn0.6C and Fe22Mn0.6C0.19V TWIP steels with similar grain sizes were fabricated through solution treatments at different temperatures. Mechanical properties were measured by tensile tests, and microstructure evolution was observed by EBSD and TEM. The strain hardening rate (dσ/dε)-true strain (ε) curves of two steels were drawn. The results show that for the Fe22Mn0.6C0.19V steel, the strain hardening rate platform appear when true strain ε>0.14, while the strain hardening rate platform appear when the ε>0.12 for the Fe22Mn0.6C steel. The platform of Fe22Mn0.6C steel is significantly longer than that of Fe22Mn0.6C0.19V steel, The platform of Fe22Mn0.6C0.19V steel disappear quickly as true strain ε>0.21. Tensile specimens of Fe22Mn0.6C and Fe22Mn0.6C0.19V steels were observed by TEM, the results show that both the generation and propagation of deformation twins are inhibited significantly by vanadium carbides.
Key words:  TWIP steel      strain hardening rate      vanadium carbides      deformation twins     
Received:  24 February 2012     
ZTFLH: 

TG115.213

 
Fund: 

Supported by National Natural Science Foundation of China (No.50873141) and the Fundamental Research Funds for the Central Universities (No.N100507002)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00094     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1067

[1] Frommeyer G, Br¨ux U, Neumann P. ISIJ Int, 2003; 43: 438

[2] Gr¨assel O, Kr¨uger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391

[3] Wang S H, Liu Z Y, Wang G D, Liu J L, Liang G F , Li Q L. J Iron Steel Res, 2010; 17: 70

[4] Vercammen S, Blanpai B, Cooman B C D, Wollants P. Acta Mater, 2004; 52: 2005

[5] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1

[6] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387–389: 158

[7] Hokka M, Kuokkala V T, Curtze S, Vuoristo T, Apostol M. J Phys IV France, 2006; 134: 1301

[8] Xiong R G, Fu R Y , Su Y, Li Q , Wei X C, Li L. J Iron Steel Res, 2009; 16: 81

[9] Li N, Wang Y D, Peng R L, Sun X, Liaw P K, Wu G L, Wang L, Cai H N. Acta Mater, 2011; 59: 6369

[10] Bouaziz O, Allain S, Estrin Y. Scr Mater, 2010; 62: 713

[11] Bouaziz O, Allain S, Scott C. Scr Mater, 2008; 58: 484

[12] Gutierrez–Urrutia I, Zaefferer S, Raabe D. Mater Sci Eng, 2010; A527: 3552

[13] Wang S H, Liu Z Y, Wang G D. Acta Metall Sin, 2009; 45: 1083

(王书涵, 刘振宇, 王国栋. 金属学报, 2009; 45: 1083)

[14] Bracke L, Verbeken K, KestensL, PenningJ. Acta Mater, 2009; 57: 1512

[15] Jiang L. PhD Thesis, Montreal: Mcgill University, 2004

[16] Dumay A. PhD Thesis, Nancy: Institut National Polytechnique de Lorraine, 2008

[17] Chateau J P, Dumay A, Allain S, Jacques A. J Phys: Conf Ser, 2010; 240: 012023

[18] Scott C, Remy B, Collet J L, Cael A, Bao C, Danoix F, Malard B, Curfs C. Int J Mater Res, 2011; 102: 538

[19] Wilkens M. Phys Statd Solid, 1970; 2A: 359

[20] Furuhara T, Shinyoshi T, Miyamoto G, Yamaguchi J, Sugita N, Kimura N, Takemura N, Maki T. ISIJ Int, 2003; 43: 2028

[21] Renard K, Ryelandt S, Jacques P J. Mater Sci Eng, 2010; A527: 2969

[22] Bouaziz O, Allain S, Scott C P, Cugy P, Barbier D. Curr Opin Solid State Mater Sci, 2011; 15: 141

[23] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319–321: 246

[24] Sevillano J G. Scr Mater, 2008; 59: 135

[25] Allain S, Chateau J P, Dahmoun D, Bouaziz O. Mater Sci Eng, 2004; A387–389: 272

[26] Danaf E E, Kalidindi S R, Doherty R D. Metall Mater Trans, 1999; 30A: 1223

[27] M¨ullner P, Solcnthalcr C. Mater Sci Eng, 1997; A230: 107
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[3] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[4] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[5] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[6] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[7] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[8] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[9] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[10] Xiaoyun YUAN, Liqing CHEN. EFFECT OF GRAIN AND GRAIN BOUNDARY FEATURESON ANTI-CORROSION ABILITY OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2016, 52(10): 1345-1352.
[11] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
[12] SUN Chaoyang, GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(3): 357-363.
[13] Chaoyang SUN,Xiangru GUO,Ning GUO,Jing YANG,Jie HUANG. INVESTIGATION OF PLASTIC DEFORMATION BEHAVIOR ON COUPLING TWINNING OF POLYCRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(12): 1507-1515.
[14] SUN Chaoyang, HUANG Jie, GUO Ning, YANG Jing. A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY[J]. 金属学报, 2014, 50(9): 1115-1122.
[15] LU Fayun, YANG Ping, MENG Li, WANG Huizhen. MICROSTRUCTURE, MECHANICAL PROPERTIES AND CRYSTALLOGRAPHY ANALYSIS OF Fe-22Mn TRIP/TWIP STEEL AFTER TENSILE DEFORMATION[J]. 金属学报, 2013, 49(1): 1-9.
No Suggested Reading articles found!