Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1057-1066    DOI: 10.3724/SP.J.1037.2012.00115
论文 Current Issue | Archive | Adv Search |
RECRYSTALLIZATION OF ULTRA-LOW CARBON STEEL SHEET AFTER ULTRA-RAPID ANNEALING
HOU Ziyong, XU Yunbo, WU Di
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

HOU Ziyong XU Yunbo WU Di. RECRYSTALLIZATION OF ULTRA-LOW CARBON STEEL SHEET AFTER ULTRA-RAPID ANNEALING. Acta Metall Sin, 2012, 48(9): 1057-1066.

Download:  PDF(5502KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A new annealing technology has been developed in order to conduct fast steel annealing. The microstructure and texture of the Nb+Ti stabilized interstitial-free (IF) steel and high Nb-IF steel highly cold deformed to a reduction of 94.2% after ultra-rapid annealing (URA) process with heating rates approximately 300 oC/s were characterized by means of OM, TEM, EBSD and XRD. The experimental results indicate that the recrystallization process is significantly accelerated and the finish recrystallization temperature is increased after URA. Moreover, the fully recrystallization can be obtained in as short as about 0.41 s, compared with about 4 s in the conventional annealing (CA) process with heating rates approximately 20o C/s. In the fully recrystallized condition, the grain size and intensity of {445}<231> fiber in the Nb+Ti-IF steel, about 11.2 μm and 15.6, can be observed in one URA cycle, respectively. However, the grain size and intensity of {445}<231> fiber are 13.5 μm and 14.0, respectively, after the Nb+Ti-IF steel is subjected to one CA cycle. On the other hand, the URA has unapparently influence on grain size, within (11.0±0.3) μm in either one URA or one CA cycle, of the high Nb-IF steel, with about 18.0 intensity of {223}<472> fiber. Simultaneously, more random fiber can be found in one URA cycle than in one CA cycle with higher intensity of {223}<472> texture up to 23.9. The grain refining effect in either one URA or one CA cycle is attributed to the mutual interaction of  nucleation density, annealing time and grain boundary migration rate.
Key words:  ultra-low carbon steel      ultra-rapid annealing      recrystallization      microstructure      texture     
Received:  05 March 2012     
ZTFLH: 

TG142.4

 
Fund: 

Supported by National Natural Science Foundation of China (No.51174059) and Fundamental Research Funds for the Central Universities (Nos.110607004 and 110407003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00115     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1057

[1] Tiitto K M, Jung C, Wray P, Garcia C I, Deardo A J. ISIJ Int, 2004; 44: 404

[2] Ghosh P, Bhattachary B, Ray R K. Scr Mater, 2007; 56: 657

[3] Verbeken K, Kestens L, Jonas J J. Scr Mater, 2003; 48: 1457

[4] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219

[5] Go J, Poole W J, Militzer M, Wells M A. Mater Sci Technol, 2003; 19: 1361

[6] Ferry M, Jones D. Scr Mater, 1998; 38: 177

[7] Salvatori I, Moore W B R. ISIJ Int, 2000; 40(Suppl): 179

[8] Atkinson M. Mater Forum, 1993; 17: 181

[9] Atkinson M. Mater Sci Eng, 1999; A262: 33

[10] Muljono D, Ferry M, Dunne D P. Mater Sci Eng, 2001; A303: 90

[11] Ferry M, Muljono D, Dunne D P. ISIJ Int, 2001; 41: 1053

[12] Reis A C C, Bracke L, Petrov R, Kaluba W J, Kestens L. ISIJ Int, 2003; 43: 1260

[13] Stockemer J, Vanden Brande P. Metall Mater Trans, 2003; 34A: 1341

[14] Hou Z Y, Xu Y B, Wu D. Chin J Mater Res, 2012; 26: 13

(侯自勇, 许云波, 吴迪. 材料研究学报, 2012; 26: 13)

[15] Deng Q, Hou Z Y, Yan J J, Li J P. J Mater Metall, 2012; 11: 38

(邓峤, 侯自勇, 燕际军, 李建平. 材料与冶金学报, 2012; 11: 38)

[16] Massardier V, Ngansop A, Fabr`egue D, Merlin J. Mater Sci Eng, 2010; A527: 5654

[17] Shi H, Atkinson M. J Northeast Univ (Nat Sci), 1989; 10: 282

(施华, Atkinson M. 东北大学学报(自然科学版), 1989; 10: 282)

[18] Hazra S S, Gazder A A, Pereloma E V. Mater Sci Eng, 2009; A524: 158

[19] Stockemer J, Van den Brande P. In: Gottstein G, Molodov D A eds., Proc 1st Int Conf on Joint, Aachen: Springer–Verlag, 2001: 1131

[20] Su Q Q, Lin D W,Wang M, Gan Q S. Shanghai Met, 2009; 31(2): 53

(苏琪琦, 林大为, 王淼, 甘青松. 上海金属, 2009; 31(2): 53)

[21] Kitano F, Urabe T, Fujita T, Nakajima K, Hosoya Y. ISIJ Int, 2001; 41: 1402

[22] Avrami M. J Chem Phys, 1941; 9: 177

[23] Johnson W A, Mehl R F. Trans AIME, 1939; 135: 416

[24] Lusk M, Jou H J. Metall Trans, 1997; 28A: 287

[25] Hutchinson W B, Ushioda K. Scand J Metall, 1984; 13: 269

[26] Urabe T, Fujita T, Yamazaki Y J. Autom Eng Jpn, 2001; 55: 13

[27] Ushioda K, Schlippenbach U V, Hutchinson W B. Text Microstruct, 1987; 7: 11

[28] De Cock T, Capdevila C, Caballero F G, Garc´?a de Andr´es C. Mater Sci Eng, 2009; A519: 9

[29] Hou Z Y, Xu Y B, Wang J F, Wu D. J Northeast Univ (Nat Sci), 2012; 33: 203

(侯自勇, 许云波, 王佳夫, 吴迪. 东北大学学报(自然科学版), 2012; 33: 203)

[30] Mart´?nez V J, Verdeja J I, Pero–Sanz J A. Mater Charact, 2001; 46: 45

[31] Saha R, Ray R K. ISIJ Int, 2008; 48: 976
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!