Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 845-852    DOI: 10.3724/SP.J.1037.2012.00001
论文 Current Issue | Archive | Adv Search |
EFFECTS OF Re AND Ru ON MICROSTRUCTURE AND SEGREGATION OF Ni-BASED SINGLE-CRYSTAL SUPERALLOYS
LIU Gang, LIU Lin, ZHANG Shengxia, YANG Chubin, ZHANG Jun, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

LIU Gang LIU Lin ZHANG Shengxia YANG Chubin ZHANG Jun FU Hengzhi. EFFECTS OF Re AND Ru ON MICROSTRUCTURE AND SEGREGATION OF Ni-BASED SINGLE-CRYSTAL SUPERALLOYS. Acta Metall Sin, 2012, 48(7): 845-852.

Download:  PDF(4494KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of Re and Ru on segregation and microstructure evolution during heat treatment has been investigated in four Ni-based single-crystal superalloys with varied contents of Re (3%-6%, mass fractions) and Ru (0% and 3%). The additions of Re and Ru lead to the more severe segregation of alloying elements in as-cast structures. However, the effects of Ru on as-cast segregation can be neglected after the stepwise solution heat treatments. The additions of Re and Ru lead to the lower γ'-coarsening rate, more cuboidal γ'-morphology and reduced γ'-size. Electron microprobe analysis (EPMA) indicates that Al, Ta and Ni partition to the γ'-precipitates, whereas Re and Cr strongly partition to the γ-matrix. In comparison to Re and Cr, Ru and W show the less tendency to partition to the γ-matrix. Additionally, Re increases the supersaturation of Re, Cr, Co and W in the γ-matrix, whereas Ru only slightly suppresses the partition of these TCP-forming elements to the γ-matrix.
Key words:  Ru      Re      single-crystal superalloy      microstructure      segregation      γ'-morphology     
Received:  04 January 2012     
ZTFLH: 

TG146

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00001     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/845

[1] Hu Z Q, Liu L R, Jin T, Sun X F. Aeroengine, 2005; 31: 1

(胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31: 1)

[2] Pollock T M, Tin S. J Propul Power, 2006; 22: 361

[3] Guo J T. Acta Metall Sin, 2010; 46: 513

(郭建亭. 金属学报, 2010; 46: 513)

[4] Yang C B, Liu L, Zhao X B, Liu G, Zhang J, Fu H Z. Acta Metall Sin, 2011; 47: 1246

(杨初斌, 刘林, 赵新宝, 刘 刚, 张军, 傅恒志. 金属学报, 2011; 47: 1246)

[5] Walston WS, Schaeffer J C, MurphyWH. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996, Warrendale: TMS, 1996: 9

[6] Guan X R, Liu E Z, Zheng Z, Yu Y S, Tong J, Zhai Y C. J Mater Sci Technol, 2011; 27: 113

[7] Rae C M F, Reed R C. Acta Mater, 2001; 49: 4113

[8] Retting R, Singer R F. Acta Mater, 2011; 59: 317

[9] Walston S, Cetel A, Mackay R, O’Hara K, Duhl D, Dresfield R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 15

[10] Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans, 2008; 39A: 1014

[11] Hedge S R, Kearsey R M, Beddoes J C. Mater Sci Eng, 2010; A527: 5528

[12] Yu J J, Sun X F, Zhao N R, Jin T, Guan H R, Hu Z Q. Mater Sci Eng, 2007; A460–461: 420

[13] Feng Q, Carroll L J, Pollock T M. Metall Mater Trans, 2006; 37A: 1949

[14] Liu G, Liu L, Zhao X B, Ge B M, Zhang J, Fu H Z. Metall Mater Trans, 2011; 42A: 2733

[15] Hu H Q. Solidification Principle of Metals. Beijing: China Machine Press, 2000: 130

(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 130)

[16] Kablov E N, Petrushin N V. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Warrendale: TMS, 2008: 901

[17] Karunaratne M S A, Cox D C, Reed R C. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 263

[18] Volek A, Singer R F. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 713

[19] Lifshitz L M, Slyozov V V. J Phys Chem, 1961; 19: 35

[20] F¨ahrmann M, F¨ahrmann E, Pollock T M, Johnson W C. Metall Mater Trans, 1997; 28A: 1943

[21] Neumeier S, Pyczak F, G¨oken M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Warrendale: TMS, 2008: 109

[22] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q. Acta Metall Sin, 1998; 6: 591

(田素贵, 周惠华, 张静华, 杨洪才, 徐永波, 胡壮麒. 金属学报, 1998; 6: 591)

[23] Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623

[24] Caron P, Khan T. Mater Sci Eng, 1983; A61: 173

[25] Ofori A P, Humphreys C J, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 787

[26] Carroll L J, Feng Q, Mansfield J F, Pollock T M. Mater Sci Eng, 2007; A457: 292

[27] Volek A, Pyczak F, Singer R F, Mughrabi H. Scr Mater, 2005; 52: 141

[28] Reed R C, Yeh A C, Tin S, Babu S S, Miller M K. Scr Mater, 2004; 51: 327

[29] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041

[30] Chen J Y, Zhao B, Feng Q, Cao L M, Sun Z Q. Acta Metall Sin, 2010; 46: 897

(陈晶阳, 赵宾, 冯强, 曹腊梅, 孙祖庆. 金属学报, 2010; 46: 897)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[10] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[11] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[13] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!