Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 837-844    DOI: 10.3724/SP.J.1037.2012.00007
论文 Current Issue | Archive | Adv Search |
HIGH TEMPERATURE DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION MECHANISM TRANSFORMATION IN Ti2448 ALLOY
TIAN Yuxing, LI Shujun, HAO Yulin, YANG Rui
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

TIAN Yuxing LI Shujun HAO Yulin YANG Rui. HIGH TEMPERATURE DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION MECHANISM TRANSFORMATION IN Ti2448 ALLOY. Acta Metall Sin, 2012, 48(7): 837-844.

Download:  PDF(4535KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ti2448 (Ti-24Nb-4Zr-8Sn, mass fraction, %) is a multifunctional β-type biomedical titanium alloy with low elastic modulus, high strength and good biocompatibility. The alloy exhibits a peculiar plastic deformation behavior at room temperature called highly localized plastic deformation. With aid of such mechanism, the initial microstructure with coarse grains can be easily refined to homogenous equiaxed microstructure with nano-sized grains by the conventional cold processing such as rolling. In the paper, its high temperature plastic deformation behavior and the corresponding microstructure evolution were investigated in the single $\beta$ phase field by varying the strain rates in the ranges of 0.001-70 s-1. The results showed that the true stress and strain rate can be described by a bilinear relation, which is in sharp contrast with the conventional Sigmoidal relation found in other β-type titanium alloys. As the strain rates less than 0.1 s-1, the alloy follows the conventional β-type titanium alloys with a high average value of strain rate sensitivity being 0.265. As the strain rates higher than 1 s-1, the true stress and strain rate can be described by another linear relation with a much small average value of strain rate sensitivity being 0.032. This is different from other alloys exhibiting gradual decrease of strain hardening with the increase of the strain rates. Microstructure observations and kinetic analyses revealed that such bilinear relation would be related to its highly localized plastic deformation behavior and dynamic recrystallization (DRX), which are triggered and enhanced at higher strain rates over 1 s-1. Although dynamic recovery (DRV) is still a key microstructure evolution mechanism of the alloy during plastic deformation in single β phase field, the increase of strain rate induces a transformation from DRV to DRX, resulting in significant grain refinement from the initial coarse grains about 80 μm to refined grains less than 3 μm. Thus, the DRX is a crucial mechanism of the Ti2448 alloy to achieve significant grain refinement during hot processing.
Key words:  Ti2448 alloy      dynamic recovery (DRV)      dynamic recrystallization (DRX)      strain rate      microstructure evolution     
Received:  05 January 2012     
ZTFLH: 

TG146.2

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00007     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/837

[1] Weiss I, Semiatin S L. Mater Sci Eng, 1998; A243: 46

[2] Warchomicka F, Stockinger M, Degischer H P. J Mater Process Technol, 2006; 177: 473

[3] Kent D, Wang G, Yu Z T, Ma X Q, Dargusch M. J Mech Behav Biomed Mater, 2011; 4: 405

[4] Bourell D L, McQueen H J. J Mater Shaping Technol, 1987; 5: 53

[5] Gourdet S, Montheillet F. Mater Sci Eng, 2000; A283: 274

[6] Sakai T. J Mater Process Technol, 1995; 53: 349

[7] Kuhlaann–Wilsdorf D, Hansen N. Scr Metall, 1991; 25: 1557

[8] McQueen H J. Mater Sci Eng, 2004; A387–389: 203

[9] Henshall G A, Kassner M E, McQueen H J. Metall Trans, 1992; 23A: 881

[10] Gryziecki J, Gdula Z. Mater Sci Eng, 1987; A93: 99

[11] Kaibyshev R, Sitdikov O, Goloborodko A, Sakai T. Mater Sci Eng, 2003; A344: 348

[12] Hallberg H, Wallin M, Ristinmaa M. Mater Sci Eng, 2010; A527: 1126

[13] Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, Watanabe Y. Acta Mater, 2008; 56: 821

[14] Belyakov A, Gao W, Mirura H, Sakai T. Metall Mater Trans, 1998; 29A: 2957

[15] Chen Y J, Li Y J, Walmsley J C, Dumoulin S, Roven H J. Metall Mater Trans, 2010; 41A: 787

[16] Wang G, Xu L, Tian Y X, Zheng Z, Cui Y Y, Yang R. Mater Sci Eng, 2011; A528: 22

[17] Philippart I, Rack H J. Mater Sci Eng, 1998; A254: 253

[18] Balasubrahmanyam V V, Prasad Y V R K. Mater Sci Eng, 2002; A336: 150

[19] Mironov S, Sato Y S, Kokawa H. Mater Sci Eng, 2010; A527: 7498

[20] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R. Acta Biomater, 2007; 3: 277

[21] Zhang S Q, Li S J, Jia M T, Hao Y L, Yang R. Scr Mater, 2009; 60: 733

[22] Cui J P, Hao Y L, Li S J, Sui M L, Li D X, Yang R. Phys Rev Lett, 2009; 102: 045503

[23] Hao Y L, Yang R. Acta Metall Sin, 2005; 41: 1183

(郝玉琳, 杨 锐. 金属学报, 2005; 41: 1183)

[24] Vuayshankar M N, Ankem S. Mater Sci Eng, 1990; A129: 229

[25] Lee W S, Lin C F, Chen T H, Hwang H H. J Mech Behav Biomed Mater, 2008; 1: 336

[26] Anken S, Margolin H. Metall Trans, 1986; 17A: 2209

[27] Rao K P, Presad Y V R K. J Mech Work Technol, 1986; 13: 83

[28] McQueen H J, Jin N, Ryan N D. Mater Sci Eng, 1995; A190: 43

[29] Dadras P, Thomas J F. Metall Trans, 1981; 12A: 1867

[30] Li L, Zhou J, Duszczyk J. J Mater Process Technol, 2006; 172: 372

[31] Morgan G C, Hammond C. Mater Sci Eng, 1987; 86: 159

[32] McQueen H J. Microstruct Sci, 1979; 7: 71

[33] Song H W, Zhang S H, Cheng M, Li Z X, Cao C X, Bao C L. Acta Metall Sin, 2011; 47: 462

(宋鸿武, 张士宏, 程明, 李臻熙, 曹春晓, 包春玲. 金属学报, 2011; 47: 462)

[34] Montheillet F, Dajno D, Come N, GauTier E, Simon A, Audrerie P, Chaze A M, Levaillant Ch. In: Froes F H, Caplan I, eds., Titanium 92: Science and Technology, Warrendale: TMS, 1993: 1347

[35] McQueen H J, Bourell D L. In: Sachdev A K, Embury J D, eds., Formability and Metallurgical Structure, Warrendale: TMS, 1987: 344

[36] Warchomicka F, Poletti C, Stockinger M. Mater Sci Eng, 2011; A528: 8277

[37] Sergueeva A V, Stolyarov V V, Valiev R Z, Mukherjee A K. Scr Mater, 2000;43: 819

[38] Li L X, Lou Y, Yang L B, Peng D S, Rao K P. Mater Des, 2002; 23: 451

[39] Kim J H, Semiatin S L, Lee C S. Mater Sci Eng, 2008; A485: 601

[40] Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R. Appl Phys Lett, 2005; 87: 091906

[41] Warchomicka F, Stockinger M, Degischer H P. J Mater Process Technol, 2006; 177: 473
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[7] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[8] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[11] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[12] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[13] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[14] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[15] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
No Suggested Reading articles found!