Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 393-400    DOI: 10.3724/SP.J.1037.2011.00809
论文 Current Issue | Archive | Adv Search |
HETEROGENEOUS MICROSTRUCTURE AND TEXTURE EVOLUTION DURING FABRICATION OF Zr-Sn-Nb  ZIRCONIUM ALLOY SHEETS
CHEN Jianwei1, LUAN Baifeng1, CHAI Linjiang1, YU Hongbing1, LIU Qing1,ZHOU Jun2, LI Zhongkui2
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044
2.Northwest Institute for Nonferrous Metal Research, Xi'an 710016
Cite this article: 

CHEN Jianwei, LUAN Baifeng, CHAI Linjiang, YU Hongbing, LIU Qing,ZHOU Jun, LI Zhongkui. HETEROGENEOUS MICROSTRUCTURE AND TEXTURE EVOLUTION DURING FABRICATION OF Zr-Sn-Nb  ZIRCONIUM ALLOY SHEETS. Acta Metall Sin, 2012, 48(4): 393-400.

Download:  PDF(1125KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Zirconium alloys are widely used as fuel cladding and structural materials for nuclear reactors due to the low neutron absorption cross-section, good corrosion resistance and acceptable mechanical properties. These properties are greatly dependent on microstructural and textural features, such as grain morphology, grain size, crystallographic texture and distribution of precipitates. It is necessary to understand microstructure and texture evolution during fabrication in order to optimize the manufacturing process and to improve the service performance. In this work, microstructure and texture evolution during fabrication of Zr-Sn-Nb new zirconium alloy sheets are investigated using XRD, SEM-ECC, TEM and EBSD. The results show that the random texture formed by β quenching transforms into tilt basal texture after hot rolling. The basal texture keeps stable during the following  fabrication stages. The texture of the rolling sheets is mainly characterized as <1010> direction parallel to rolling direction (<1010>//RD), while the texture of the annealing sheets is <1210> direction parallel to rolling direction (<1210>//RD). The microstructure evolves from a weave Widmansatten structure of β quenching stage to heterogeneous deformation structures associated with hot and cold rolling and then to a fully recrystallized structure after final annealing. The cold rolling sheets present more heterogeneous structures in which the C axes of less deformed grains mostly concentrate in the normal direction. The larger grains in annealed structures mostly belong to the <1210>//RD basal texture while the smaller grains are in the <1010>//RD orientation. The reason for the heterogeneous deformation structures and texture evolution during annealing are discussed according to the deformation and recrystallization mechanisms.
Key words:  Zr-Sn-Nb alloy      microstructure      texture      heterogeneous deformation structure      recrystallization     
Received:  28 December 2011     
ZTFLH: 

TG146.4+14

 
Fund: 

Chongqing Leading Scientist Program;National Natural Science Foundation of China;Fundamental Research Funds for the Central Universities;Fundamental Research Funds for the Central Universities

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00809     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/393

[1] Srivastava D, Dey G K, Banerjee S.  Metall Mater Trans,1995; A26: 2707

[2] Bickel G A, Griffiths M.  J Nucl Mater, 2008; 383: 9

[3] Krishna K V M, Sahoo S K, Samajdar I, Neogy S, Tewari R,Srivastava D, Dey G K, Das G H, Saibaba N, Banarjee S.  J Nucl Mater,2008; 383: 78

[4] Vaibhaw K, Rao S V R, Jha S K, Saibaba N, Jayaraj R N. J Nucl Mater, 2008; 383: 71

[5] Kumar M K, Vanitha C, Samajdar I, Dey G K, Tewari R, Srivastava D,Banerjee S.  J Nucl Mater, 2004; 335: 48

[6] Tewari R, Srivastava D, Dey G K, Chakravarty J K, Banerjee S. J Nucl Mater, 2008; 383: 153

[7] Li Z K, Zhou L, Zhang J J, Wang W S, Jin Z H.  Rare Met Mater Eng, 2004; 33: 1362

    (李中奎, 周廉, 张建军, 王文生, 金志浩. 稀有金属材料与工程, 2004; 33: 1362)

[8] Woo O T, Tangri K.  J Nucl Mater, 1979; 79: 82

[9] Jeong Y H, Rheem K S, Choi C S, Kim Y S.  J Nucl Sci Technol,1993; 30: 154

[10] Sahoo S K, Hiwarkar V D, Samajdar I, Dey G K, Srivastav D, Tiwari R,Banerjee S.  Scr Mater, 2007; 56: 963

[11] Kumar M K, Vanitha C, Samajdar I, Dey G K, Tewari R, Srivastava D,Banerjee S.  Mater Sci Technol, 2006; 22: 331

[12] Dewobroto N, Bozzolo N, Barberis P, Wagner F.  Mater Sci Forum,2004; 467-470: 453

[13] Zhu K Y, Chaubet D, Bacroix B, Brisset F.  Acta Mater,2005; 53: 5131

[14] Zhu K Y, Bacroix B, Chauveau T, Chaubet D, Castelnau O.  Metall Mater Trans, 2009; A40: 2423

[15] Bozzolo N, Dewobroto N, Grosdidier T, Barberis P, Wagner F. Mater Sci Forum, 2004; 467-470: 441

[16] Gerspach F, Bozzolo N, Wagner F.  Scr Mater, 2009; 60: 203

[17] Hiwarkar V D, Sahoo SK, Samajdar I, Satpathy A, Krishna K V M, Dey G K, Srivastav D, Tewari R, Banarjee S.  J Nucl Mater, 2011; 412: 287

[18] Guo X C, Luan B F, Chen J W, Zhou J, Zhang X Y, Li Z K, Liu Q. Rare Met Mater Eng, 2011; 40: 813

     (过锡川, 栾佰峰, 陈建伟, 周军, 张喜燕, 李中奎, 刘庆.稀有金属材料与工程, 2011; 40: 813)

[19] Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H.  J Alloys Compd, 2009; 479: 423

[20] Kaschner G C, Gray G.  Metall Mater Trans, 2000; A31: 1997

[21] McCabe R J, Proust G, Cerreta E K, Misra A.  Int J Plast,2009; 25: 454

[22] Francillette H, Bacroix B, Gasperini M, Bechade J L.  Acta Mater,1998; 46: 4131

[23] Castelnau O, Francillette H, Bacroix B, Lebensohn R A. J Nucl Mater, 2001; 297: 14

[24] Akhtar A.  J Nucl Mater, 1973; 47: 79

[25] Biget M P, Saada G.  J Phys III France, 1995; 5: 1833

[26] Yoo M H, Morris J R, Ho K M, Agnew S R.  Metall Mater Trans,2002; A33: 813

[27] Akhtar A.  Metall Mater Trans, 1975; A6: 1217

[28] Humphreys F J, Ferry M G.  Acta Mater, 1996; 44: 2717

[29] Engler O, Hirsch J, Lucke K.  Acta Metall Mater,1995; 43: 121

[30] Higginson R L, Aindow M, Bate P S.  Mater Sci Eng,1997; A225: 9

[31] Benum S, Nes E.  Acta Mater, 1997; 45: 4593

[32] Ibe G, Lucke K. in: Margolin H ed.,  Recrystallization,Grain Growth and Textures, Ohio, Metals Park: ASM, 1966: 434

[33] Wagner F, Bozzolo N, Van Landuyt O, Grosdidier T.  Acta Mater,2002; 50: 1245
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!