Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 455-460    DOI: 10.3724/SP.J.1037.2011.00722
论文 Current Issue | Archive | Adv Search |
EFFECT OF QUENCHING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 550 MPa GRADE THICK STEEL PLATE
WAN Decheng, YU Wei, LI Xiaolin, ZHANG Jie, WU Huibin, CAI Qingwu
Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

WAN Decheng, YU Wei, LI Xiaolin, ZHANG Jie, WU Huibin, CAI Qingwu. EFFECT OF QUENCHING TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 550 MPa GRADE THICK STEEL PLATE. Acta Metall Sin, 2012, 48(4): 455-460.

Download:  PDF(909KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The heat treatments of 730-910 ℃ quenching and 600 ℃ tempering were applied to enhance the low temperature toughness of 550 MPa grade thick steel plate. Moreover, the effect of quenching temperature on the microstructure and mechanical properties was studied. The results showed that strength and toughness of the specimen decreased at first and then increased as quenching temperature increased within intercritical region. When the quenching temperature was raised up to austenite region, the strength increased further, but the toughness decreased. Mechanical properties of the steel subjected to intercritical quenching at 760 ℃ and tempering were the worst of all of the specimen, due to coarsened polygonal ferrite and the lath, acicular M/A constituent along grain boundaries and inside the grains, which deteriorated the toughness seriously. On the other hand, the steel treated by intercritical quenching at 850 ℃ and tempering showed the optimum combination of strength and toughness compared with the steel treated by quenching after austenization and tempering. This is attributed to microstructure refinement, higher fraction of high angle grain boundaries caused by the formation of ferrite, abundant homogeneous dislocation cell substructure and stable thin film retained austenite.
Key words:  thick steel plate      quenching temperature      microstructure      mechanical property     
Received:  18 November 2011     
ZTFLH: 

TG142.1

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00722     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/455

[1] Hicho G E, Smith L C, Singhal S, Fields R J.  J Heat Treat,1984; 3: 205

[2] Dhua S K, Mukerjee D, Sarma D S.  Metall Mater Trans,2003; 34A: 2493

[3] Zhang C L, Cai D Y, Liao B, Zhao T C, Fan Y C.  Mater Lett, 2004; 58: 1524

[4] Bakhtiari R, Ekrami A.  Mater Sci Eng, 2009; A525: 159

[5] Hwang B, Lee C G.  Mater Sci Eng, 2010; A527: 4341

[6] Maleque M A, Poon Y M, Masjuki H H.  J Mater Process Technol, 2004; 153--154: 482

[7] Zhu H B, Hu S P, Wu H B, Dong C F, Wang L J.  J Univ Sci Technol Beijing, 2010; 32: 1552

    (朱海宝, 胡水平, 武会宾, 董常福, 王立军. 北京科技大学学报,2010; 32: 1552)

[8] Liu D S, Cheng B G, Luo M.  Trans Mater Heat Treat,2011; 32(9): 125

    (刘东升, 程丙贵, 罗咪. 材料热处理学报, 2011; 32(9): 125)

[9] Chen Y Y, Cheng B G, Liu D S.  Met Heat Treat, 2012; 37: 77

    (陈圆圆, 程丙贵, 刘东升. 金属热处理, 2012; 37: 77)

[10] Zou D H, Peng Z F, Li P H, Guo A M.  Adv Mater Res,2011; 152--153: 1276

[11] Sui Y, Cong J G, Liu M.  Shandong Metall, 2004; 26: 197

     (隋轶, 丛津功, 刘明. 山东冶金, 2004; 26: 197)

[12] Zhou Y L, Di G B, Liu Z Y, Wang G D.  Trans Mater Heat Treat,2011; 32(10): 106

     (周砚磊, 狄国标, 刘振宇, 王国栋. 材料热处理学报, 2011; 32(10): 106)

[13] Tong K, Zhuang C J, Liu Q, Han X L, Zhu L X, He X D.  Mater Mech Eng, 2011; 35(2): 4

     (仝珂, 庄传晶, 刘强, 韩新利, 朱丽霞, 何小东.机械工程材料, 2011; 35(2): 4)

[14] Liao B, Xiao F R.  Trans Mater Heat Treat, 2009; 30(2): 57

     (廖波, 肖福仁. 材料热处理学报, 2009; 30(2): 57)

[15] Wen Y H, Tang D, Wu H B, Guo Z.  J Univ Sci Technol Beijing,2008; 30: 724

     (温永红, 唐荻, 武会宾, 郭振. 北京科技大学学报, 2008; 30: 724)

[16] Hwang B, Lee C G, Kim S J.  Metall Mater Trans, 2011; 42A: 717

[17] Gao K, Wang L D, Zhu M, Chen J D, Shi Y J, Kang M K. Acta Metall Sin, 2007; 43: 315

     (高宽, 王六定, 朱明, 陈景东, 施易军, 康沫狂.金属学报, 2007; 43: 315)

[18] Caballero F G, Santofimia M J, Capdevila C, Garcia-Mateo C,Garcia de Andres C.  ISIJ Int, 2006; 46: 1479
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!