Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 593-600    DOI: 10.3724/SP.J.1037.2011.00590
论文 Current Issue | Archive | Adv Search |
WU Zhiqiang1, TANG Zhengyou1, LI Huaying1,ZHANG Haidong2
1. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2. MCC Capital Engineering & Research Incorporation Limited, Beijing 100176
Download:  PDF(3123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure and mechanical properties of Fe--18Mn low carbon high manganese TRIP/TWIP steels during tensile tests in the range of initial strain rate of 1.67×10-4---103 s-1 at room temperature were studied. The inverse effect of strain rate on strength of steel was produced, the strength and ductility of steels decreased with increasing strain rate in the range of quasi--static tensile strain rate of 1.67×10-4---1.67×10-1 s-1. While inverse effect of strain rate on ductility of steels was produced in the range of dynamic tensile strain rate of 101---103 s-1, the strength and ductility of materials increased significantly with increasing strain rate. The tensile strength of high manganese TRIP/TWIP steels was 957 MPa and their elongation was 55.8%. These results indicated that Fe--18Mn steel had excellent mechanical properties and good fracture resistance. The higher the strain rates applied, the less martensite, the more directions of deformation twins. The microstructure evolution of the specimen was analyzed by SEM, TEM and XRD, martensitic transformation and deformation twins were produced during the tensile deformation, and adiabatic temperature rise effect made the matrix softening during the high--speed deformation.
Key words:  TRIP/TWIP steel      strain rate      microstructure evolution      martensitic transformation      deformation twin     
Received:  20 September 2011     


Corresponding Authors:      E-mail:

Cite this article: 


URL:     OR

[1] Zhang W N, Liu Z Y, Wang G D.  Acta Metall Sin, 2010; 46: 1230

    (张维娜, 刘振宇, 王国栋. 金属学报, 2010; 46: 1230)

[2] Masaaki I, Kozo K.  Int J Impact Eng, 2000; 24: 117

[3] Liu C Y, Li D Z, Wei Y H, Hou L F, Liu D F, Jin X Z.  J Iron Steel Res, 2010; 22(6): 48

    (刘春月, 李大赵, 卫英慧, 侯利锋, 刘东风, 金献哲. 钢铁研究学报, 2010; 22(6): 48)

[4] Liu W, Li Z B, Wang X, Zou H, Wang L X.  Acta Metall Sin, 2009; 45: 285

    (刘伟, 李志斌, 王翔, 邹骅, 王立新. 金属学报, 2009; 45: 285)

[5] Grassel O, Kruger L, Frommeyer G, Meyer L W.  Int J Plast, 2000; 16: 1391

[6] Curtze S, Kuokkala V T.  Acta Mater, 2010; 58: 5129

[7] Sahu P, Curtze S, Das A, Mahato B, Kuokkalab V T, Chowdhurya S G.  Scr Mater, 2010; 25: 6

[8] Hwang S W, Ji J H, Park K T.  Mater Sci Eng, 2011; A528: 7267

[9] Parka K T, Hwang S W, Ji J H, Lee C S.  Proc Eng, 2011; 10: 1002

[10] Hsu C H, Lee S C, Wang L, Dong X.  Mater Chem Phys, 2002; 73: 174

[11] Murr L E, Staudhammer K P, Hecker S S.  Metall Trans, 1982; 13: 627

[12] Yu Y N.  Fundamentals of Materials Science. Beijing: High Education Press, 2006: 559

     (余永宁. 材料科学基础. 北京: 高等教育出版社, 2006: 559)

[13] Xu Z, Zhao L C.  Metal Solid Phase Transformation Principle. Beijing: Science Press, 2004: 86

     (徐洲, 赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 86)

[14] Wu C C, Wang S H, Chen C Y, Yang J R, Chiu P K, Fang J.  Scr Mater, 2007; 56: 717

[15] Lee W S, Xiea G L, Lin C F.  Mater Sci Eng, 2001; A257: 256

[16] Hokka M, Kuokkala V T, Curtze S, Vuoristo T, Apostol M.  J Phys IV Fr, 2006; 134: 1301

[17] Huang B X, Wang X D, Rong Y H, Wang L, Jin L.  Mater Sci Eng, 2006; A438--440: 306

[18] De A K, Speer J G, Murdock D C, Mataya M C, Comstock R J.  Metall Mater Trans, 2006; 37A: 1875

[19] Schramm R E, Reed R P.  Metall Trans, 1975; 6: 1345

[20] Bolling G F, Richman R H.  Acta Metall, 1965; 13: 709

[21] Zhou X F, Fu R Y, Su Y, Li L.  J Mater Therm Treat, 2009; 30(5): 145.

     (周小芬, 符仁钰, 苏钰, 李麟. 材料热处理学报, 2009; 30(5): 145)

[22] Bohle J, Chmelic F.  J Alloys Compd, 2004; 378: 207

[23] Barnett M R, Keshavara Z, Beer A G, Atwell D.  Acta Mater, 2004; 52: 5093

[24] Xue Q, Liao X Z, Zhu Y T, Gray III G T.  Mater Sci Eng, 2005; A410--411: 252

[25] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N.  Mater Sci Eng, 2004; A387--389: 158
[1] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[2] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[3] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[4] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[5] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[6] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[7] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[8] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[9] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[10] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[11] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[12] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[13] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
No Suggested Reading articles found!