Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 601-606    DOI: 10.3724/SP.J.1037.2012.00108
论文 Current Issue | Archive | Adv Search |
EFFECT OF GRAIN SIZE ON ATMOSPHERIC CORROSION RESISTANCE OF ULTRA--LOW CARBON IF STEEL
WANG Bing,  LIU Qinyou,  WANG Xiangdong
Institute for Structural Materials, State Key Laboratory of Advanced Steel Processing and Products, Central Iron and Steel Research Institute, Beijing 100081
Download:  PDF(2438KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Three kinds of ultra-low carbon IF steel with different grain sizes, and same chemical composition were prepared by different rolling and heat treat process. The relationship between grain size and atmospheric corrosion resistance of IF steel was investigated by immersion corrosion test, cyclic immersion corrosion test, AFM/SEM micro-analysis and electrochemical test. The results show that the local corrosion in grain boundary increases after immersion corrosion test, the depth of crack in grain boundary becomes deeper and the width of crack becomes wider with grain sizes of IF steel increase from 15 μm to 220 μm. The crack and cavity in the rust after cycle immersion corrosion test are increased and the atmospheric corrosion resistance is decreased with IF steel grain size coarsing from 15 μm to 46 μm. As grain size increase from 15 μm to\linebreak 220 μm, the whole compactness of rust are increased, the rust resistance and the atmospheric corrosion resistance are increased. The effect of grain size on the corrosion current density of local grain boundary was analysed and the mechanics of corrosion was discussed. The total quantity of corrosion surface defect is decreased due to the decrease of grain boundary energy with the increase of grain size and the atmospheric corrosion resistance is increased. Meanwhile, the local corrosion near the grain boundary is increased duo to the increase of local corrosion current density with the increase of grain size and the atmospheric corrosion resistance is decreased. The atmospheric corrosion resistance is influenced by the two factors simultaneously.
Key words:  grain size      ultra-low carbon IFsteel      atmospheric corrosion resistance     
Received:  28 February 2012     
ZTFLH: 

TG174

 
  TG142.1

 
Corresponding Authors:  wbgyzy@126.com      E-mail:  wbgyzy@126.com

Cite this article: 

WANG Bing, LIU Qinyou, WANG Xiangdong. EFFECT OF GRAIN SIZE ON ATMOSPHERIC CORROSION RESISTANCE OF ULTRA--LOW CARBON IF STEEL. Acta Metall Sin, 2012, 48(5): 601-606.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00108     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/601

[1] Weng Y Q.  ISIJ Int, 2003; 43: 1675

[2] Jouko I L.  Adv Mater Process, 2001; 159: 31

[3] Cao C N.  Environmental Corrosion of Materials in China. Beijing: Chemistry Industry Press, 2005

    (曹楚南. 中国材料的自然环境腐蚀. 北京: 化学工业出版社, 2005)

[4] Youssef K M S, Koch C C, Fedkiw P S.  Corros Sci, 2004; 46 (1): 51--64

[5] Wislei R O, Celia M F, Amauri G.  Mater Sci Eng, 2005; A402(1-2): 22--32

[6] Di S A , Barteri M, Kenny J.  J Mater Sci, 2003; 38(15): 3257--3262

[7] Kalmykov V V, Razdobreev V G.  Prot Met, 1999; 35(6): 598--599

[8] Li Y, Wang F, Liu G.  Corrosion, 2004; 60(10): 891--896

[9] Wang B, Liu Q Y, Jia S J, Wang X D, Lu J, Dong H.  J Chin Soc Corros Prot, 2007; 27(4): 193--196

    (汪兵, 刘清友, 贾书君, 王向东, 卢吉, 董瀚. 中国腐蚀与防护学报, 2007; 27(4): 193--196)

[10] Jiang P F, Wang B, Liu Q Y, Shi Z.  Steel, 2009; 44(12): 67--70

     (姜鹏飞, 汪兵, 刘清友, 施哲. 钢铁, 2009; 44(12): 67--70)

[11] Mi F Y, Wang X D, Wang B, Chen X P, Peng Y.  J Chin Soc Corros Prot, 2010; 30(5): 391--395

     (米丰毅, 王向东, 汪兵, 陈小平, 彭云. 中国腐蚀与防护学报, 2010; 30(5): 391--395)

[12] Li S P, Guo J, Yang S W, He X L.  J Univ Sci Technol Beijing, 2008; 30(1): 16--20

     (李少坡, 郭佳, 杨善武, 贺信莱. 北京科技大学学报, 2008; 30(1): 16--20)

[13] Guo J, Yang S W, Shang C J, Wang Y, He X L.  Corros Sci, 2009; 51: 242

[14] Guo J, Yang S W, Shang C J, Wang Y, He X L.  Iron Steel, 2008; 43: 58

     (郭佳, 杨善武, 尚成嘉, 王郢, 贺信莱. 钢铁, 2008; 43: 58)

[15] Sarkar P P, Kumar P, Manna M K, Charaborti P.  Mater Lett, 2005; 59: 2488

[16] Dong J, Cui W F, Zhang S X, Liu C M.  J Northeastern Univ, 2007; 12: 1294

     (董杰, 崔文芳, 张思勋, 刘春明. 东北大学学报, 2007; 12: 1294)

[17] Fu G Y, Liu Q, Men B J, Zhang H L.  Rare Met Mater Eng, 2007; 36: 695

     (付广艳, 刘群, 门冰洁, 张宏亮. 稀有金属材料与工程, 2007; 36: 695)

[18] Jin G Y, Qiao L J, Gao K W, Kimura T, Hashimoto K, Chu W Y.  Chin J Nonferrous Met, 2004; 14: 210

     (金光熙, 乔利杰, 高克玮, Kimura T, Hashimoto K, 褚武扬. 中国有色金属学报, 2004; 14: 210)

[19] Qi J J, Huang Y H, Zhang Y.  Microalloying Steel. Beijing: Metallurgical Industry Press, 2006: 10

     (齐俊杰, 黄运华, 张跃. 微合金化钢. 北京: 冶金工业出版社, 2006: 10)

[20] Cao C N, Zhang J Q.  An Introduction to Electrochemical Impedance Spectroscopy.Beijing: Science Press, 2002: 188

     (曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 188)

[21] Wang S T, Yang S W, Gao K W, Shen X A, He X L.  Acta Metall Sin, 2008; 44: 1116

     (王树涛, 杨善武, 高克玮, 沈晓安, 贺信莱. 金属学报, 2008; 44: 1116)

[22] Bousselmi L, Fiaud C, Tribollet B, Triki E.  Corros Sci, 1997; 39: 1711

[23] Bousselmi L, Fiaud C, Tribollet B, Triki E.  Electrochim Acta, 1999; 44: 4357

[24] Santana Rodriguez J J, Santana Hernandez F J, Gonzalez J E.  Corros Sci, 2002; 44: 2597

[25] Yu Y N.  Metallography. Bei Jjing: Metallurgical Industry Press, 2000: 375

     (余永宁. 金属学. 北京: 冶金工业出版社, 2000: 375)
[1] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[2] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[3] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[4] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[5] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[6] Yongfeng SONG, Xiongbing LI, Haiping WU, Jiayong SI, Xiaoqin HAN. EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD[J]. 金属学报, 2016, 52(3): 378-384.
[7] Jin LIU,Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. 金属学报, 2015, 51(7): 777-783.
[8] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[9] LI Xiongbing, SONG Yongfeng, NI Peijun, LIU Feng. ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION[J]. 金属学报, 2015, 51(1): 121-128.
[10] HOU Danhui , LIANG Songmao , CHEN Rongshi , DONG Chuang . SOLIDIFICATION BEHAVIOR AND GRAIN SIZE OF SAND CASTING Mg-6Al-xZn ALLOYS[J]. 金属学报, 2014, 50(5): 601-609.
[11] WU Huibin ),WU Fengjuan ),YANG Shanwu ),TANG Di ). THE FORMATION MECHANISM OF AUSTENITE STRUCTURE WITH MICRO/SUB-MICROMETER BIMODAL GRAIN SIZE DISTRIBUTION[J]. 金属学报, 2014, 50(3): 269-274.
[12] PAN Taijun,),HE Yunxiang ),LI Jie ),ZHANG Bao ). OXIDATION BEHAVIOR OF BINARY Cu-Cr ALLOYS IN AIR AT 700 AND 800 ℃[J]. 金属学报, 2014, 50(3): 337-344.
[13] HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS[J]. 金属学报, 2014, 50(2): 137-140.
[14] MO Yongda, JIANG Yanbin, LIU Xinhua, XIE Jianxin. MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF COLUMNAR-GRAINED HAl77-2 BRASS[J]. 金属学报, 2014, 50(11): 1367-1376.
[15] DU Beining, YANG Jinxia, CUI Chuanyong, SUN Xiaofeng. EFFECTS OF GRAIN REFINEMENT ON CREEP PROPERTIES OF K417G SUPERALLOY[J]. 金属学报, 2014, 50(11): 1384-1392.
No Suggested Reading articles found!