Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 107-114    DOI: 10.3724/SP.J.1037.2011.00533
论文 Current Issue | Archive | Adv Search |
EFFECT OF PRE-DEFORMATION ON GRAINS AND PRECIPITATES OF Zr-Sn-Nb ALLOY DURING AGING
CHAI Linjiang, LUAN Baifeng, CHEN Jianwei, QIU Risheng, LIU Qing
College of Materials Science and Engineering, Chongqing University, Chongqing 400044
Cite this article: 

CHAI Linjiang LUAN Baifeng CHEN Jianwei QIU Risheng LIU Qing. EFFECT OF PRE-DEFORMATION ON GRAINS AND PRECIPITATES OF Zr-Sn-Nb ALLOY DURING AGING. Acta Metall Sin, 2012, 48(1): 107-114.

Download:  PDF(6495KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Zirconium-based alloys are being used as fuel cladding and structural materials for nuclear reactors since they have a good irradiation stability, corrosion resistance and acceptable mechanical properties in a reactor environment. Recently, more advanced zirconium-based alloys are required for enhanced operating conditions such as an increased burn-up and higher operation temperatures. Therefore, the development of advanced zirconium alloys for a fuel cladding is being progressed in various countries. Among the developed new zirconium alloys, a low Nb containing alloy series designed by China is a group of promising cladding material. For the new alloy system, optimum manufacturing processes are significant factors to improve properties and need urgently to be established. In this work, electron channeling contrast (ECC), secondary electron (SE) imaging and energy dispersive spectroscopy (EDS) analyzing techniques are employed to investigate the effect of pre-deformation following β-quenching on recrystallization and precipitating behavior of a new Zr-Sn-Nb alloy during aging. The results show that remarkable differences exist between the microstructure of specimens with and without pre-deformation prior to aging at the same temperature (650 ℃). Specimens aged without pre-deformation present extremely heterogeneous recrystallized grains that generally own irregular shape. The size discrepancy between the intragranularly fine Zr(Fe, Cr, Nb)2 precipitates and the larger ones, which is Cu-containing Zr3Fe particles and distribute along the conserved prior $\beta$ grain boundaries, are distinct. While for specimens aged following 20% pre-deformation, the recrystallized α-grains are evidently fined and homogenized. The size discrepancy between the two sorts of precipitates decrease as well and the larger ones change to distribute along recrystallized α-grain boundaries. Therefore, the introduction of pre-deformation is able to change markedly the characteristics of microstructure and second phase particles distribution and further be utilized to obtain preferred microstructure.
Key words:  zirconium alloy      pre-deformation      second phase particle      recrystallization     
Received:  23 August 2011     
ZTFLH: 

TG146.4+14

 
Fund: 

Supported by New Century Excellent Talents in University (No.NCET-08-0606), Fundamental Research Funds for the Central Universities
(Nos.CDJZR10130008 and CDJXS10132201)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00533     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/107

[1] Thorvaldsson T, Andersson T, Wilson A, Wardle A. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 128

[2] Garzarolli F, Steinberg E, Weidinger H G. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry:

8th International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 202

[3] Foster J P, Dougherty J, Burke M G, Bates J F, Worcester S. J Nucl Mater, 1990; 173: 164

[4] Garzarolli F, Stehle H, Steinberg E. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, West Conshohocken: ASTM International, 1996: 12

[5] Gros J P, Wadier J F. J Nucl Mater, 1990; 172: 85

[6] Zhou B X, Yang X L. Nucl Power Eng, 1997; 18: 511

(周邦新, 杨晓林. 核动力工程, 1997; 18: 511)

[7] Comstock R J, Schoenberger G, Sabol G P. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, West Conshohocken: ASTM International, 1996: 710

[8] Nikulina A V, Markelov V A, Peregud M M, Bibilashvili Y, Kotrekhov V A, Lositsky A F, Kuzmenko N V, Shevnin Y P, Shamardin V K, Kobylyansky G P, Novoselov A E. In:

Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295,

West Conshohocken: ASTM International, 1996: 785

[9] Jeong Y H, Park S Y, Lee M H, Choi B K, Baek J Y, Park J Y, Kim J H, Kim H G. J Nucl Sci Technol, 2006; 43: 977

[10] Zhao W J. Rare Met Lett, 2004; 23: 15

(赵文金. 稀有金属快报, 2004; 23: 15)

[11] Li Z K, Zhou L, Zhang J J, Wang W S, Jin Z H. Rare Met Mater Eng, 2004; 33: 1362

(李中奎, 周廉, 张建军, 王文生, 金志浩. 稀有金属材料与工程, 2004; 33: 1362)

[12] Yan Q S, Liu W Q, Lei M, Li Q, Yao M Y, Zhou B X. Rare Met Mater Eng, 2007; 36: 104

(严青松, 刘文庆, 雷鸣, 李强, 姚美意, 周邦新. 稀有金属材料与工程, 2007; 36: 104)

[13] Guo X C, Luan B F, Chen J W, Zhou J, Zhang X Y, Li Z K, Liu Q. Rare Met Mater Eng, 2011; 5: 813

(过锡川, 栾佰峰, 陈建伟, 周军, 张喜燕, 李中奎, 刘 \ \ 庆. 稀有金属材料与工程, 2011; 5: 813)

[14] Waterloo G, Hansen V, Gjφnnes J, Skjervold S R. Mater Sci Eng, 2001; A303: 226

[15] Deschamps A, Livet F, Br´echet Y. Acta Mater, 1998; 47: 281

[16] Liu P, Kang B X, Cao X G, Huang J L, Yen B, Gu H C. Mater Sci Eng, 1999; A265: 262

[17] Song Z Y, Sun Q Y, Xiao L, Sun J, Ge P. Rare Met Mater Eng, 2010; 39: 791

(宋振亚, 孙巧艳, 肖 林, 孙 军, 葛鹏. 稀有金属材料与工程, 2010; 39: 791)

[18] Yuan Z X, Song S H, Wang Y H, Liu J, Guo A M. Mater Lett, 2005; 59: 2048

[19] Kim J M, Jeong Y H. J Nucl Mater, 1999; 275: 74

[20] Xue X Y, Song Q Z, Liu J Z, Li P Z. Rare Met Mater Eng, 1998; 27: 302

(薛祥义, 宋启忠, 刘建章, 李佩志. 稀有金属材料与工程, 1998; 27: 302)

[21] Liu P, Ornhagen C, Nilsson J O. Scr Mater, 1998; 38: 775.

[22] Holt R A. J Nucl Mater, 1970; 35: 322

[23] Okvist G, K¨allstr¨om K. J Nucl Mater, 1970; 35: 316

[24] Woo O T, Tangri K. J Nucl Mater, 1979; 79: 82

[25] Jeong Y H, Rheem K S, Choi C S, Kim Y S. J Nucl Sci Technol, 1993; 30: 154

[26] Hong H S, Kim S J, Lee K S. J Nucl Mater, 1999; 265:108

[27] Yao M Y, Zhang Y, Li S L, Zhang X, Zhou J, Zhou B X. Acta Metall Sin, 2011; 47: 872

(姚美意, 张宇, 李士炉, 张 欣, 周军, 周邦新. 金属学报, 2011; 47: 872)

[28] Garzarolli F, Goll W, Seibold A, Ray I. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th

International Symposium, ASTM STP 1295, West Conshohocken: ASTM International, 1996: 541

[29] Ruhmann H, Manzel R, Sell H, Charquet D. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry:

11th International Symposium, ASTM STP 1295, West Conshohocken: ASTM International, 1996: 865

[30] Eucken C, Finden E T, Trapp–Pritsching S, Weidinger H G. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: 8th International Symposium,

ASTM STP 1023, Philadelphia: ASTM International, 1989: 113

[31] Pan J S, Tong J M, Tian M B. The Fundamental of Materials Science. Beijing: Tsinghua Unviersity Press, 1998: 567

(潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 1998: 567)

[32] Loucif K, Borrelly R, Merle P. J Nucl Mater, 1994; 210: 84

[33] Maussner G, Steinberg E, Tenckhoff E. In: Van Swam L F P, Adamson R B eds., Zirconium in the Nuclear Industry: 7th International Symposium, ASTM STP 939, Philadelphia:

ASTM International, 1987: 307

[34] Rollett A D, Srolovitz D J, Doherty R D, Anderson M P. Acta Metall, 1989; 37: 627

[35] Humphreys F J, Hatherly M. Recrystallisation and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier Ltd, 2004: 109
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[7] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[8] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[11] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[12] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[13] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[14] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
No Suggested Reading articles found!