Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1591-1599    DOI: 10.3724/SP.J.1037.2011.00523
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
II. Verification and Application of Microstructural Evolution Model
YAO Zhihao, WANG Qiuyu, ZHANG Maicang, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

YAO Zhihao WANG Qiuyu ZHANG Maicang DONG Jianxin. MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
II. Verification and Application of Microstructural Evolution Model. Acta Metall Sin, 2011, 47(12): 1591-1599.

Download:  PDF(1836KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microstructure evolution models of dynamic recrystallization, meta–dynamic recrystallization, static recrystallization and grain growth behavior for GH738 superalloy were implanted into finite element software MSC. SUPERFORM with FORTRAN language by means of the user subroutines, in order to add the function of predicting microstructure evolution during hot forging to MSC. SUPERFORM. Microstructure evolution models of GH738 superalloy and the feasibility of the redeveloped MSC.SUPERFORM were verified by comparison between the simulated and experimental results on hot compression specimens and dia.250 mm turbine disc. The numerical simulation of the dia.1250 mm turbine disc forging was carried out by the redeveloped MSC.SUPERFORM, showing that hot working window was in temperature range of 1040—1100  ℃, strain rate range of 10—25 mm/s. Comparison between simulated and actual forging results in the condition of 1080  ℃, 10 mm/s showed that the simulated microstructure was in good agreement with the actual result. Besides, the numerical simulation of the dia.1400 mm turbine disk forging was also carried out by the redeveloped MSC.SUPERFORM. Therefore, the construction of microstructure evolution models of GH738 superalloy and the feasibility of the redeveloped MSC.SUPERFORM are of great significance to accurate control and prediction of turbine disc microstructure.
Key words:  GH738 wrought nickel base superalloy      turbine disc      secondary development      microstructure evolution      numerical simulation     
Received:  11 August 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51071017)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00523     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1591

[1] Kermanpur A, Tin S, Lee P D, Mclean M. JOM, 2004; 56:72

[2] Tabb T P, Kantzos P T, Telesman J, Gayda J, Sudbrack C K, Palsa B. Acta Mater, 2011; 33: 414

[3] Shi C X, Zhong Z Y. Acta Metall Sin, 2010; 46: 1281

(师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)

[4] Guimaraes A A, Jonas J J. Metall Trans, 1981; A12: 1655

[5] Weaver D S, Semiatin S L. Scr Mater, 2007; 57: 1044

[6] Sellars C M, Whiteman J A. Mater Sci, 1979; 3: 187

[7] Feng J P, Luo Z J. J Mater Process Technol, 2000; 108: 40

[8] Sellars C M. Mater Sci Technol, 1985; 1: 325

[9] Hu Z M, Brooks JW, Dean T A. J Mater Process Technol, 1999; 88: 251

[10] Kopp R. Electrochem Acta, 1991; 20: 351

[11] Shen G S, Furrer D. J Mate Process Technol, 2000; 98: 189

[12] GAO Z Y, Grandhi R V. Int J Machine Tools Manuf, 2000; 40: 691

[13] Yeom J T, Lee C S, Kim J H, Park N K. Mater Sci Eng, 2007; A449: 722

[14] Na Y S, Yeom J T, Park N K, Lee J Y. J Mater Process Technol, 2003; 141: 337

[15] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Scr Mater, 2000; 42: 17

[16] Guan R G, Zhang Q S, Dai C G, Zhao Z Y, Liu C M. Acta Metall Sin, 2011; 47: 1167

(管仁国, 张秋生, 戴春光, 赵占勇, 刘春明. 金属学报, 2011; 47: 1167)

[17] Wan Z Y, Yu W, Yang R. Chin J Nonferrous Met. 2010;20: s775

(万自永, 余巍, 杨瑞. 中国有色金属学报, 2010; 20: s775)

[18] Oh S I, Wu W T, Tang J P. J Mater Process Technol, 1992; 35: 357

[19] Wang K L, Fu M W, Lu S Q, Li X. Mater Des, 2011; 32: 1283

[20] Zhang X X, Sun Y H, Zhu Y L. Adv Mater Res, 2011;317–319: 170

[21] Ding H L, Hirai K, Homma T, Kamado S. Comput Mater Sci, 2010; 47: 919

[22] Yanagimoto J. Modell Simul Mater Sci Eng, 2004; 12: s47

[23] Lin Y C, Chen M S. J Mater Process Technol, 2009; 209:4578

[24] Ma Q, Lin Z Q, Yu Z Q. Int J Adv Manuf Technol, 2009;40: 253

[25] Yao Z H, Dong J X, Zhang M C. Acta Metall Sin, 2011;47: 1581

(姚志浩, 董建新, 张麦仓. 金属学报, 2011; 47: 1581)

[26] China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook, 2nd Ed, Vol.2. Beijing: China Standards Press, 2001: 475

(中国航空材料手册编辑委员会编. 中国航空材料手册(第二版)/第二卷. 北京: 中国标准出版社, 2001: 475)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[8] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[10] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[12] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[13] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[14] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[15] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
No Suggested Reading articles found!