Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1581-1590    DOI: 10.3724/SP.J.1037.2011.00522
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
I. Construction of Microstructure Evolution Model
YAO Zhihao, DONG Jianxin, ZHANG Maicang
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

YAO Zhihao DONG Jianxin ZHANG Maicang. MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
I. Construction of Microstructure Evolution Model. Acta Metall Sin, 2011, 47(12): 1581-1590.

Download:  PDF(1069KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hot deformation behavior of GH738 superalloy with different initial grain sizes was studied using hot compression experiments via Gleeble–1500. Correlations between flow stress, process parameters and microstructure evolution were characterized in the temperature range of 1000—1160 ℃, strain rate range of 0.01—10 s−1 and engineering strain range of 15%—70%. Besides, metadynamic recrystallization and static recrystallization were studied in the temperature range of 1040—1120 ℃, strain rate range of 0.1—10 s−1 and engineering strain range of 15%—50% with soaking time for 0—45 s; grain growth behavior was researched in the temperature range 980—1140  with soaking time for 0—4 h. The results show that recrystallization behavior of GH738 superalloy was significantly affected by initial grain size, deformation temperature, strain and strain rate. Thermomechanical behavior and microstructural evolution models were systematically constructed based on the investigation of dynamic recrystallization, meta–dynamic recrystallization, static recrystallization and grain growth. The analyses indicate that these models shows a high correlation with actual results of GH738 superalloy.
Key words:  GH738 wrought nickel base superalloy      hot deformation      recrystallization behavior      crostructure evolution      model     
Received:  11 August 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51071017)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00522     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1581

[1] Yao Z H, Dong J X, Zhang M C, Zheng L. Rare Met Mater Eng, 2010; 39: 1565

(姚志浩, 董建新, 张麦仓, 郑磊. 稀有金属材料与工程, 2010; 39: 1565)

[2] Chang K M, Liu X B. Mater Sci Eng, 2001; A308: 1

[3] Semiatin S L, Fagin P N, Glavicic M G. Scr Mater, 2004; 50: 625

[4] Liu X B, Kang B, Chang K M. Mater Sci Eng, 2003; A340: 8

[5] Yao Z H, Dong J X, Zhang M C, Yu Q Y, Zheng L. Trans Mater Heat Treat, 2011; 32: 44

(姚志浩, 董建新, 张麦仓, 于秋颖, 郑磊. 材料热处理学报, 2011; 32: 44)

[6] Donachie M J, Pinkowish A A, Danesi W P, Radavich J F, Couts W H. Metall Trans, 1970; 1: 2623

[7] Guimaraes A A, Jonas J J. Metall Trans, 1981; A12: 1655

[8] Livesey D W, Sellars C M. Mater Sci Technol, 1985; 1: 136

[9] Li M Q, Yao X Y, Luo J, Lin Y Y, Su S B, Wang H R. Acta Metall Sin, 2007; 43: 937

(李淼泉, 姚晓燕, 罗皎, 林莺莺, 苏少博, 王海荣. 金属学报, 2007; 43: 937)

[10] Salehi A R, Serajzadeh S, Yazdipour N.Mater Chem Phys, 2007; 101: 153

[11] Gao H, Barber G C, Chen Q A, Lu Y Q. J Mater Process Technol, 2003; 142: 52

[12] Ganapathysubramanian S, Zabaras N. Int J Solid Struct, 2004; 41: 2011

[13] Wang B X, Liu X H, Wang G D. Mater Sci Eng, 2005; A393: 102

[14] Sui F L, Xu L X, Chen L Q, Liu X H. J Mater Process Technol, 2011; 211: 433

[15] Zhao M L, Sun W R, Yang S L, Qi F, Guo S R, Hu Z Q. Acta Metall Sin, 2009; 45: 79

(赵美兰, 孙文儒, 杨树林, 祁峰, 郭守仁, 胡壮麒. 金属学报, 2009; 45: 79)

[16] Sellars C M, McTegart W J. Acta Metall, 1966; 14: 1136

[17] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43

[18] Sommitsch C, Mitter W. Acta Metall, 2006; 54: 357

[19] Gottstein G, Frommert M, Goerdeler M, Schafer N. Mater Sci Eng, 2004; A387–389: 604

[20] Solhjoo S. Mater Des, 2010; 31: 1360

[21] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 692

[22] Li G, Maccagno T M, Bai D Q. ISIJ Int, 1996; 36: 1479

[23] Bai D Q, Yue S, Jonas J J. ISIJ Int, 1996; 36: 1084

[24] Shen B Z, Fang N W, Shen H F, Liu B C. Mater Sci Technol, 2005; 13: 516

(沈丙振, 方能炜, 沈厚发, 柳百成. 材料科学与工艺, 2005; 13: 516)

[25] Li G, Maccagno T M, Bai D Q. ISIJ Int, 1996; 36: 1479

[26] Sellars C M, Whiteman J A. Met Sci, 1979; 13: 187

[27] Anelli E. ISIJ Int, 1992; 32: 440
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[7] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[8] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
[9] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. 金属学报, 2023, 59(11): 1533-1540.
[11] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[12] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[13] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[14] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[15] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
No Suggested Reading articles found!