Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 56-62    DOI: 10.3724/SP.J.1037.2011.00458
论文 Current Issue | Archive | Adv Search |
EFFECT OF AGING ON MICROSTRUCTURE AND SUPERELASTICITY IN Ti-50.8Ni-0.3Cr SHAPE MEMORY ALLOY
HE Zhirong, WANG Qi, SHAO Dawei
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003
Cite this article: 

HE Zhirong WANG Qi SHAO Dawei. EFFECT OF AGING ON MICROSTRUCTURE AND SUPERELASTICITY IN Ti-50.8Ni-0.3Cr SHAPE MEMORY ALLOY. Acta Metall Sin, 2012, 48(1): 56-62.

Download:  PDF(1618KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The low temperature superelastic alloys are of wide range of applications, such as to make the energy storage devices, the earthquake protective devices and the abrasion parts, etc. The shape memory alloy (SMA) Ti-50.8Ni-0.3Cr (atomic fraction, \%) is a good low temperature superelastic alloy with low martensitic transformation temperature and high critical stress for inducing martensitic transformation. So far, the effects of the annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.3Cr SMA, and the characteristics of the shape memory effect, the superelasticity and the stress-strain cycle for annealed Ti-50.8Ni-0.3Cr SMA have been studied, systematically, while the microstructure and deformation characteristics of aged Ti-50.8Ni-0.3Cr SMA were not studied yet. In this paper, the influences of aging processes on the microstructure and superelasticity in Ti-50.8Ni-0.3Cr SMA were investigated using TEM and tensile test. With increasing aging time (tag), the morphology of Ti3Ni4 precipitate shows fine particle-shape in 300 ℃ aged Ti-50.8Ni-0.3Cr SMA, the morphology of Ti3Ni4 precipitate changes from the fine particle-shape to the needle-shape in 400 ℃ aged alloy, and the morphology of Ti3Ni4 precipitate  changes from the needle-shape to the plate-shape in 500 ℃ aged alloy. The effect of aging temperature on the precipitate morphology is more outstanding than that of aging time. With increasing tag, the tensile strengths (σb) in 300 and 400 ℃ aged alloys are increase first and then tend to stable, while σb (500 ℃) is decrease first and then tend to stable, and σb(400 ℃)>σb(300 ℃)>σb(500 ℃). The superelasticities of 300 and 400 ℃ aged alloys are better than that of 500 ℃ aged alloy. With increasing tag, the critical stress for inducing martensitic transformation of Ti-50.8Ni-0.3Cr SMA is decrease, the superelasticity energy dissipation (ΔW) of 300 ℃ aged alloy is decrease, the $\Delta W$ of 400 ℃ aged alloy is increase, and the ΔW of 500 ℃ aged alloy is increase first and then decrease.
Key words:  Ti-50.8Ni-0.3Cr alloy      shape memory alloy      aging      microstructure      superelasticity     
Received:  18 July 2011     
ZTFLH: 

TG113.25

 
Fund: 

Supported by Natural Science Foundation of Shaanxi Province (No.2009JM6010) and Special Scientific Research Program Founded by Shaanxi Provincial Education Department (No.09JK375)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00458     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/56

[1] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 49

[2] Kireeva I V, Chumlyakov Y I, Zakharova E G, Karaman I. J Phys TV, 2004; 115: 175

[3] Seyyed Aghamiri S M, Nili Ahmadabadi M, Raygan S, Haririan I, Ahmad Akhondi M S. J Mater Eng Perform, 2009; 18: 834

[4] Chen X, Song K J, Sun L L. Noise Vib Control, 2003; 23(2): 14

(陈欣, 宋孔杰, 孙玲玲. 噪声与振动控制, 2003; 23(2): 14)

[5] He Z R, Zhou J E. Acta Metall Sin, 2003; 39: 617

(贺志荣, 周敬恩. 金属学报, 2003; 39: 617)

[6] Jiang F, Liu Y, Yang H, Li L, Zheng Y. Acta Mater, 2009; 57: 4773

[7] Huang B M, Cai W, Zhao W, Zhao L C. Aerosp Mater Technol, 1997; 27(5): 24

(黄兵民, 蔡伟, 赵 蔚, 赵连城. 宇航材料工艺, 1997; 27(5): 24)

[8] Nayan N, Buravalla V, Ramamurty U. Mater Sci Eng, 2009; A525: 60

[9] Jiao Y Q, Wen Y H, Li N, He J Q, Teng J. Trans Nonferrous Met Soc China, 2009; 19: 616

[10] Liu Y, He Z R, Wang F, Yang J. Rare Met Mater Eng, 2011; 40: 1412

(刘艳, 贺志荣, 王芳, 杨军. 稀有金属材料与工程, 2011; 40: 1412)

[11] Hosoda H, Wakashima K, Miyazaki S, Inoue K. Mater Res Soc Symp Proc, 2005; 842: 353

[12] He Z, Liu M. Mater Sci Eng, 2011; A528: 6993

[13] Yang J, He Z R, Wang F, Wang Y S. Trans Mater Heat Treat, 2011; 32(2): 43

(杨军, 贺志荣, 王芳, 王永善. 材料热处理学报, 2011; 32(2): 43)

[14] He Z R, Wang F. Acta Metall Sin, 2008; 44: 23

(贺志荣, 王芳. 金属学报, 2008; 44: 23)

[15] Uchil J, Kumara K G, Mahesh K K. J Alloys Compd, 2001; 325: 210

[16] He Z R, Wang F, Wang Y S, Xia P J, Yang B. Acta Metall Sin, 2007; 43: 1293

(贺志荣, 王芳, 王永善, 夏鹏举, 杨 波. 金属学报, 2007; 43: 1293)

[17] Holec D, Bojda O, Dlouhy A. Mater Sci Eng, 2008; A481– 482: 462

[18] Zhou N, Shen C, Wagner M F X, Eggeler G, Mills M J, Wang Y. Acta Mater, 2010; 58: 6685

[19] Cao S, Nishida M, Schryvers D. Acta Mater, 2011; 59: 1780

[20] Frenzel J, George E P, Dlouhy A, Somsen C M, Wagner F, Eggeler X G. Acta Mater, 2010; 58: 3444

[21] Knalil–Allafi J, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255

[22] He Z R, Wang F. Acta Metall Sin, 2010; 46: 329

(贺志荣, 王 芳. 金属学报, 2010; 46: 329)

[23] He Z R. Acta Metall Sin, 2008; 44: 1076

(贺志荣. 金属学报, 2008; 44: 1076)

[24] Wang Q, He Z R, Wang Y S, Yang J. Acta Metall Sin, 2010; 46: 800

(王启, 贺志荣, 王永善, 杨军. 金属学报, 2010; 46: 800)

[25] Yang J, He Z R, Wang F, Wang Y S. Acta Metall Sin, 2011; 47: 157

(杨 军, 贺志荣, 王芳, 王永善. 金属学报, 2011; 47: 157)

[26] Olson G B, Cohen M J. J Less-Common Met, 1972; 28: 107
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
No Suggested Reading articles found!