Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 932-938    DOI: 10.3724/SP.J.1037.2011.00163
论文 Current Issue | Archive | Adv Search |
CORROSION BEHAVIORS OF NUCLEAR-GRADE STAINLESS STEEL AND FERRITIC-MARTENSITIC STEEL IN SUPERCRITICAL WATER
ZHONG Xiangyu, WU Xinqiang, HAN En-Hou
1) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHONG Xiangyu WU Xinqiang HAN En-Hou. CORROSION BEHAVIORS OF NUCLEAR-GRADE STAINLESS STEEL AND FERRITIC-MARTENSITIC STEEL IN SUPERCRITICAL WATER. Acta Metall Sin, 2011, 47(7): 932-938.

Download:  PDF(1240KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behaviors of nuclear-grade 304 stainless steel (304SS) and ferritic-martensitic steel P92 exposed to 400℃/25 MPa supercritical water were investigated. The exposed specimens were characterized by weight gain measurement, XRD, Raman spectroscopy and SEM. It is found that both materials show general corrosion and exponential kinetics in mass gain, and the mass gain of 304SS is approximately an order of magnitude less than that of steel P92. The oxide film on 304SS is rather thin and composed of Cr2O3, α-Fe2O3, Fe3O4 and spinel, some nodules were observed on the surface. While the oxide film on steel P92 consists of α-Fe2O3, Fe3O4 and spinel, more α-Fe2O3 exist in the outer surface of the oxide film. The surface morphology of oxide film on steel P92 changes from dense particles to porous network structure with increasing exposure time, which may be relative to the dissolution of oxide.
Key words:  nuclear-grade stainless steel      ferritic-martensitic steel      supercritical water      corrosion      oxide film     
Received:  23 March 2011     
Fund: 

Supported by National Basic Research Program of China (No.2011CB610501) and National Science and Technology Major Project (No.2011ZX06004-009})

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00163     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/932

[1] A Technology Roadmap for Generation IV Nuclear Energy Systems. U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002: 45

[2] Was G S, Teysseyre S. In: Allen T R, King P J, Nelson L, eds., Proc 12th Int Conf Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Salt Lake City: TMS, 2005: 1343

[3] Chen Y, Sridharan K, Allen T R. Corrosion 2007. Nashville, Tennessee: NACE, 2002: No.07408

[4] Gao X,Wu X Q, Zhang Z E, Guan H, Han E H. J Supercrit Fluids, 2007; 42: 157

[5] Sun M C, Wu X Q, Zhang Z E, Han E H. Corro Sci, 2009; 51: 1069

[6] Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X, Pister C. J Nucl Mater, 2007; 371: 176

[7] Was G S, Allen T R. American Nuclear Society–Int Congress on Advances in Nuclear Power Plants 2005, ICAPP’05, Seoul: American Nuclear Society, 2005: 3460

[8] Tan L, Ren X, Allen T R. Corros Sci, 2010; 52: 1520

[9] Tan L, Yang Y, Allen T R. Corros Sci, 2006; 48: 3123

[10] Yin K, Qiu S, Tang R, Zhang Q, Zhang L. J Supercrit Fluids, 2009; 50: 235

[11] Chen Y, Sridharan K, Allen T R. Corros Sci, 2006; 48: 2843

[12] Robertson J. Corros Sci, 1991; 32: 443

[13] Ziemniak S E. J Solution Chem, 1992; 21: 745

[14] Lister D H, Davidson R D, Mcalpine E. Corros Sci, 1987; 27: 113

[15] Kim J H, Hwang I S. Nucl Eng Des, 2005; 235: 1029

[16] Maslar J E, Hurst W S, Bowers W J, Hendricks J H, Aquino M I. J Electrochem Soc, 2000; 147: 2532

[17] Maslar J E, Hurst W S, Bowers W J, Hendricks J H, Aquino M I, Levin I. Appl Surf Sci, 2001; 180: 102

[18] Miyazawa T, Terachi T, Uchida S, Satoh T, Tsukada T, Satoh Y, Wada Y, Hosokawa H. J Nucl Sci Technol, 2006; 43: 884

[19] Halvarsson M, Tang J E, Asteman H, Sevensson J E, Johansson L G. Corros Sci, 2006; 48: 2014

[20] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379

(韩恩厚, 王俭秋, 吴欣强, 柯伟. 金属学报, 2010; 46: 1379)

[21] Li M S. The Oxidation of Metals. Beijing: Metallurgy Industry Press, 2001: 37

(李美栓. 金属的高温腐蚀, 北京: 冶金工业出版社, 2001: 37)

[22] Ampornrat P, Was G S. J Nucl Mater, 2007; 371: 1

[23] Kritzer P, Boukis N, Dinjus E. J Supercrit Fluids, 1999; 15: 205

[24] Sue K, Tsujinaka N, Adschiri T, Arai K. Ind Eng Chem Res, 2002; 41: 3298

[25] Sue K, Tsujinaka N, Adschiri T, Arai K, Watanabe Y. Corrosion 2002. Denver, Colorado: NACE, 2002: No.02354
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[10] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[11] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[12] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[15] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
No Suggested Reading articles found!