|
|
EFFECT OF GRAIN BOUNDARY NETWORK ON THE INTERGRANULAR STRESS CORROSION CRACKING OF 304 STAINLESS STEEL |
HU Changliang, XIA Shuang, LI Hui, LIU Tingguang, ZHOU Bangxin, CHEN Wenjue |
Institute of Materials, Shanghai University, Shanghai 200072 |
|
Cite this article:
HU Changliang XIA Shuang LI Hui LIU Tingguang ZHOU Bangxin CHEN Wenjue. EFFECT OF GRAIN BOUNDARY NETWORK ON THE INTERGRANULAR STRESS CORROSION CRACKING OF 304 STAINLESS STEEL. Acta Metall Sin, 2011, 47(7): 939-945.
|
Abstract The grain boundary network in a 304 stainless steel can be controlled by grain boundary engineering (GBE). The total length proportion of Σ3n coincidence site lattice (CSL) boundaries was increased to more than 70%, and the large size highly twinned grain-cluster microstructure formed through the treatment of GBE. Stress corrosion cracking (SCC) susceptibility of 304 stainless steel was evaluated through C-ring specimen tests conducted in acidified boiling 20%NaCl solution. Based on the characterization by SEM, EBSD and OM, it was found that the large grain-clusters associated with many interconnected Σ3-Σ3-Σ9 and Σ3-Σ9-Σ27 triple junctions produced by GBE arrest the IGSCC cracks and improve the resistance to IGSCC.
|
Received: 31 March 2011
|
Fund: Supported by National Natural Science Foundation of China (No.50974148), National Basic Research Program of China (No. 2011CB610502) and Shanghai
Leading Academic Discipline Project (No.S30107) |
[1] Yang W D. Nuclear Reactor Materials Science. Beijing: Atomic Energy Press, 2000: 195(杨文斗. 反应堆材料学. 北京: 原子能出版社, 2000: 195)[2] Trillo E A, Murr L E. Acta Mater, 1999; 47: 235[3] Zhou Y, Aust K T, Erb U, Palumbo G. Scr Mater, 2001; 45: 49[4] Horn R M, Gordon G M, Ford F P, Cowan R L. Nucl Eng Des, 1997; 174: 313[5] Saito N, Tsuchiya Y, Kano F, Tanaka N. Corrosion, 2000; 56: 57[6] Watanable T. Res Mech, 1984; 11: 47[7] Kronberg M L, Wilson F H. Trans AIME, 1949; 185: 501[8] Randle V. Acta Mater, 2004; 52: 4067[9] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantscher K, Vincze A. J Power Sour, 1999; 78: 79[10] Thaveeprungsriporn V, Was G S. Metall Trans, 1997; 28: 2101[11] Lin P, Palumbo G, Erb U. Scr Metall Mater, 1995; 33: 1387[12] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331[13] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen WJ, Wang N. Corros Sci, 2011; 53: 1880[14] Jin W Z, Yang S, Kokawa H, Wan Z J. J Mater Sci Technol, 2007; 23: 785[15] Rahimi S, Engelberg D L, Duff J A, Marrow T J. J Microsc, 2009; 233: 423[16] Brandon D G. Acta Mater, 1966; 14: 1479[17] Gerstman V Y, Bruemmer S M. Acta Mater, 2001; 49: 1589[18] Marrow T J, Babout L, Jivkor A P, Wood P, Engelberg D, Stevens N, Withers P J, Newman R C. J Nucl Mater, 2006; 352: 62[19] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006; 54: 2019[20] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990[21] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40A: 3016[22] Palumbo G, Aust K T, Lehockey E M, Erb U, Lin P. Scr Mater, 1998; 38: 1685[23] Arafin M A, Szpunar J A. Corr Sci, 2009; 51: 119[24] Arafin M A, Szpunar J A. Mater Sci Eng, 2009; A513–514: 254[25] Arafin M A, Szpunar J A. Comput Mater Sci, 2010; 47: 890[26] Pan Y, Adams B L, Olson T, Panayotou N. Acta Mater, 1996; 44: 4685[27] Alexandreanu B, Was G S. Scr Mater, 2006; 54: 1047 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|