Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 939-945    DOI: 10.3724/SP.J.1037.2011.00184
论文 Current Issue | Archive | Adv Search |
EFFECT OF GRAIN BOUNDARY NETWORK ON THE INTERGRANULAR STRESS CORROSION CRACKING OF 304 STAINLESS STEEL
HU Changliang, XIA Shuang, LI Hui, LIU Tingguang, ZHOU Bangxin, CHEN Wenjue
Institute of Materials, Shanghai University, Shanghai 200072
Cite this article: 

HU Changliang XIA Shuang LI Hui LIU Tingguang ZHOU Bangxin CHEN Wenjue. EFFECT OF GRAIN BOUNDARY NETWORK ON THE INTERGRANULAR STRESS CORROSION CRACKING OF 304 STAINLESS STEEL. Acta Metall Sin, 2011, 47(7): 939-945.

Download:  PDF(1414KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The grain boundary network in a 304 stainless steel can be controlled by grain boundary engineering (GBE). The total length proportion of Σ3n coincidence site lattice (CSL) boundaries was increased to more than 70%, and the large size highly twinned grain-cluster microstructure formed through the treatment of GBE. Stress corrosion cracking (SCC) susceptibility of 304 stainless steel was evaluated through C-ring specimen tests conducted in acidified boiling 20%NaCl solution. Based on the characterization by SEM, EBSD and OM, it was found that the large grain-clusters associated with many interconnected Σ3-Σ3-Σ9 and Σ3-Σ9-Σ27 triple junctions produced by GBE arrest the IGSCC cracks and improve the resistance to IGSCC.
Key words:  304 stainless steel      grain boundary engineering      stress corrosion cracking      grain-cluster     
Received:  31 March 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.50974148), National Basic Research Program of China (No. 2011CB610502) and Shanghai
Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00184     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/939

[1] Yang W D. Nuclear Reactor Materials Science. Beijing: Atomic Energy Press, 2000: 195

(杨文斗. 反应堆材料学. 北京: 原子能出版社, 2000: 195)

[2] Trillo E A, Murr L E. Acta Mater, 1999; 47: 235

[3] Zhou Y, Aust K T, Erb U, Palumbo G. Scr Mater, 2001; 45: 49

[4] Horn R M, Gordon G M, Ford F P, Cowan R L. Nucl Eng Des, 1997; 174: 313

[5] Saito N, Tsuchiya Y, Kano F, Tanaka N. Corrosion, 2000; 56: 57

[6] Watanable T. Res Mech, 1984; 11: 47

[7] Kronberg M L, Wilson F H. Trans AIME, 1949; 185: 501

[8] Randle V. Acta Mater, 2004; 52: 4067

[9] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantscher K, Vincze A. J Power Sour, 1999; 78: 79

[10] Thaveeprungsriporn V, Was G S. Metall Trans, 1997; 28: 2101

[11] Lin P, Palumbo G, Erb U. Scr Metall Mater, 1995; 33: 1387

[12] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331

[13] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen WJ, Wang N. Corros Sci, 2011; 53: 1880

[14] Jin W Z, Yang S, Kokawa H, Wan Z J. J Mater Sci Technol, 2007; 23: 785

[15] Rahimi S, Engelberg D L, Duff J A, Marrow T J. J Microsc, 2009; 233: 423

[16] Brandon D G. Acta Mater, 1966; 14: 1479

[17] Gerstman V Y, Bruemmer S M. Acta Mater, 2001; 49: 1589

[18] Marrow T J, Babout L, Jivkor A P, Wood P, Engelberg D, Stevens N, Withers P J, Newman R C. J Nucl Mater, 2006; 352: 62

[19] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006; 54: 2019

[20] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990

[21] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40A: 3016

[22] Palumbo G, Aust K T, Lehockey E M, Erb U, Lin P. Scr Mater, 1998; 38: 1685

[23] Arafin M A, Szpunar J A. Corr Sci, 2009; 51: 119

[24] Arafin M A, Szpunar J A. Mater Sci Eng, 2009; A513–514: 254

[25] Arafin M A, Szpunar J A. Comput Mater Sci, 2010; 47: 890

[26] Pan Y, Adams B L, Olson T, Panayotou N. Acta Mater, 1996; 44: 4685

[27] Alexandreanu B, Was G S. Scr Mater, 2006; 54: 1047
[1] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[2] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[3] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[4] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[5] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[6] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[7] Xirong LIU, Kai ZHANG, Shuang XIA, Wenqing LIU, Hui LI. Effects of Triple Junction and Grain Boundary Characters on the Morphology of Carbide Precipitation in Alloy 690[J]. 金属学报, 2018, 54(3): 404-410.
[8] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[9] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[10] Hongliang MING,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN,Mingxing SU. Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW[J]. 金属学报, 2017, 53(1): 57-69.
[11] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[12] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[13] Zilong ZHANG, Shuang XIA, Wei CAO, Hui LI, Bangxin ZHOU, Qin BAI. EFFECTS OF GRAIN BOUNDARY CHARACTER ON INTERGRANULAR STRESS CORROSION CRACKING INITIATION IN 316 STAINLESS STEEL[J]. 金属学报, 2016, 52(3): 313-319.
[14] Hongchi MA, Cuiwei DU, Zhiyong LIU, Wenkui HAO, Xiaogang LI, Chao LIU. STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE[J]. 金属学报, 2016, 52(3): 331-340.
[15] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
No Suggested Reading articles found!