Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 410-416    DOI: 10.3724/SP.J.1037.2010.00604
论文 Current Issue | Archive | Adv Search |
EFFECTS OF Bi ADDITION ON SOLIDIFICATION BEHAVIOR AND MICROSTRUCTURE OF AZ80 MAGNESIUM ALLOY
WANG Yaxiao, FU Junwei, WANG Jing, LUO Tianjiao, DONG Xuguang, YANG Yuansheng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Yaxiao FU Junwei WANG Jing LUO Tianjiao DONG Xuguang YANG Yuansheng. EFFECTS OF Bi ADDITION ON SOLIDIFICATION BEHAVIOR AND MICROSTRUCTURE OF AZ80 MAGNESIUM ALLOY. Acta Metall Sin, 2011, 47(4): 410-416.

Download:  PDF(955KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The solidification behavior and as--cast microstructure in AZ80-Bi magnesium alloy were analysed by OM, SEM, XRD and DSC. Meanwhile, the evolution of the solidification microstructure of AZ80-2%Bi alloy was studied by heating-quenching experiments. The results show that the as-cast microstructure of AZ80-2%Bi consists of primary α-Mg matrix, divorced eutectic β-Mg17Al12 phase and Mg3Bi2 phase. The Mg3Bi2 phase exists in the flake-like and granule-like morphologies. With 2.0%Bi addition, the solidification procedure of AZ80 magnesium alloy is changed. The ternary eutectic transformation L→α-Mg+β-Mg17Al12+Mg3Bi2 (at 435 ℃) takes place during solidification of AZ80-2%Bi alloy instead of the binary eutectic transformation L→α-Mg+β-Mg17Al12 (at 437 ℃) in AZ80 alloy. Comparing with AZ80 alloy, the nucleating temperature of primary $\alpha$--Mg in AZ80--2\%Bi alloy is decreased from 568.8 ℃ to 562.6 ℃, and the eutectic temperature is also decreased from\linebreak 424.2 ℃ to 421.1 ℃.
Key words:  AZ80 magnesium alloy      Bi      solidification procedure      eutectic transformation     
Received:  10 November 2010     
Fund: 

Supported by National Basic Research Program of China (No.2007CB613705)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00604     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/410

[1] Avedesian M M, Baker H. Magnesium and Magnesium Alloys. Materials Park, OH: ASM International, 1999: 22

[2] Yang Z, Li J P, Zhang J X, Lorimer GW, Robson J. Acta Metall Sin (Engl Lett), 2008; 21: 313

[3] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[4] Tang W, Han E H, Xu Y B, Liu L. Trans Nonferrous Met Soc China, 2006; 16: 1725

[5] Yakubtsov I A, Diak B J, Sager C A, Bhattacharya B, MacDonald W D, Niewczas M. Mater Sci Eng, 2008; 496: 247

[6] Zhou J X, Wang B, Tong W H, Yang Y S. Acta Metall Sin, 2007; 43: 1171

(周吉学, 汪彬, 童文辉, 杨院生. 金属学报, 2007; 43: 1171)

[7] Yang M B, Pan F S, Cheng R J, Tang A T. Mater Sci Eng, 2008; A491: 440

[8] Hirai K, Somekawa H, Takigawa Y, Higashi K. Mater Sci Eng, 2005; A403: 276

[9] Min X G, Zhu M, Sun Y S, Xue F. Mater Sci Technol, 2002; 10: 93

(闵学刚, 朱旻, 孙扬善, 薛烽. 材料科学与工艺, 2002; 10: 93)

[10] Zhao Z D, Chen Q, Wang Y B, Shu D Y. Mater Sci Eng, 2009; A515: 152

[11] Xie J C, Li Q A, Wang X Q, Li J H. Trans Nonferrous Met Soc China, 2008; 18: 303

[12] Yuan G Y, Zhang W M, Sun Y S. J Southeast Univ, 1999; 29: 115

(袁广银, 张为民, 孙扬善. 东南大学学报, 1999; 29: 115)

[13] Yuan G Y, Sun Y S, Zhang W M. Foundry, 1998; (5): 5

(袁广银, 孙扬善, 张为民. 铸造, 1998; (5): 5)

[14] Yuan G Y, Sun Y S, Ding W J. Mater Sci Eng, 2001; A308: 38–44

[15] Ren W L, Li Q A, Shi Y J, Zhang X Y. Rare Met Cem Carbides, 2010; 38(3): 34

(任文亮, 李全安, 石雅静, 张兴渊. 稀有金属与硬质合金, 2010; 38(3): 34)

[16] Guo E J, Ma B X, Wang L P. J Mater Process Technol, 2008; 206: 161

[17] Zhang G Y, Zhang H, Fang G L, Li Y C. Acta Phys Sin, 2005; 54: 5288

(张国英, 张辉, 方戈亮, 李昱材. 物理学报, 2005; 54: 5288)

[18] Liu Z, Zhang K, Zeng X Q. Theoretical Basis and Application of Mg–based Lightweight Alloys. Beijing: Machine Industry Press, 2006: 61

(刘 正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用. 北京: 机械工业出版社, 2006: 61)

[19] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L. Binary Alloy Phase Diagrams. Materials Park, OH: ASM International, 1990: 759

[20] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L. Binary Alloy Phase Diagrams. Materials Park, OH: ASM International, 1990: 169

[21] Willars P, Prince A, Okamoto H. Ternary Alloy Phase Diagrams. Materials Park, OH: ASM International, 1995: 2845

[22] Wang C L. Phase Diagrams and Its Application. Beijing: Higher Education Press, 2008: 184

(王崇琳. 相图理论及其应用. 北京: 高等教育出版社, 2008: 184)

[23] Han Q, Eenik E A, Agnew S R, Viswanathan S. in Hryn J, ed., Magnesium Technology, Warrendale, PA: TMS, 2001: 81

[24] Gebelin J C, Suery M, Favier D. Mater Sci Eng, 1999; A272: 133
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[8] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[9] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[12] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
No Suggested Reading articles found!