Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 535-539    DOI: 10.3724/SP.J.1037.2010.00617
论文 Current Issue | Archive | Adv Search |
THREE DIMENSIONAL DYNAMICAL MEASUREMENT OF DISTORTION OF HEAVY STEEL CASTINGS DURING HEAT TREATMENT PROCESS
KANG Jinwu1), NIE Gang1), YU Hailiang1, 2), LONG Haimin1), HAO Xiaokun1), HUANG Tianyou1), HU Yongyi1)
1) Department of Mechanical Engineering, Key Laboratory for Advanced Materials Processing Technology, Tsinghua University, Beijing 100084
2) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004
Cite this article: 

KANG Jinwu NIE Gang YU Hailiang LONG Haimin HAO Xiaokun HUANG Tianyou HU Yongyi. THREE DIMENSIONAL DYNAMICAL MEASUREMENT OF DISTORTION OF HEAVY STEEL CASTINGS DURING HEAT TREATMENT PROCESS. Acta Metall Sin, 2011, 47(5): 535-539.

Download:  PDF(929KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  At the forced air cooling stage in normalizing process of heavy steel castings, the nonuniform cooling might result in thermal and phase transformation stresses, which might cause the distortion, especially for the heavy yet thin blade castings. Dynamical measurement of the distortion of castings during heat treatment process will be significant for understanding the mechanism of distortion and then taking the control measures in productions. In this paper, a novel measuring method, fixed direction method, was proposed, which could three-dimensionally and dynamically measure the distortion of castings without index points at high temperature, and the corresponding analysis method was established. The method was employed to measure the distortion of a hydro blade casting at the forced cooling stage in normalizing process, and the dynamical distortion behavior in three dimensions of the blade casting was obtained. And the measurement error of blade casting was analyzed. The results show that under the conditions of no index points and high temperature, the three-dimensional distortion of castings could be dynamically measured through the fixed direction method.
Key words:  heavy steel casting      heat treatment      distortion      dynamical measurement,      no index point      fixed direction method     
Received:  16 November 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00617     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/535

[1] Yu H L, Kang J W, Huang T Y. Front Mater Sci, 2010; 4: 332

[2] Huang T Y, Liu X G, Kang J W, Shen H F, Liu B C. Foundry, 2007; 56: 899

(黄天佑, 刘小刚, 康进武, 沈厚发, 柳百成. 铸造, 2007; 56: 899)

[3] Liu B C, Kang J W, Xiong S M. Sci Technol Adv Mater, 2001; 2: 157

[4] Bruschi S, Ghiotti A. Int J Machine Tools Manuf, 2008; 48: 761

[5] Yu H L, Kang J W, Huang S X, Huang T Y. Adv Mater Res, 2011; 148–149: 103

[6] Wang P, Xiao N, Li D, Li Y. Mater Sci Forum, 2010; 654– 656: 1565

[7] Wang Z K, Hu Z H. Dongfang Electric Rev, 2004; 18(3): 137

(王贞凯, 胡章洪. 东方电气评论, 2004; 18(3): 137)

[8] Wang Y X, Zhang P C, Li B C, Zeng W D. China Foundry Mach Technol, 2007; 1: 24

(王云霞, 张鹏程, 李宝治, 曾卫东. 中国铸造装备与技术, 2007; 1: 24)

[9] Yu H L, Kang J W, Huang T Y. Sci China, 2011; 54E: 81

[10] Jiang R S, Zhang D H, Wang W H, Bu K, Cheng Y Y. Spec Cast Nonferrous Alloys, 2009; 29(1): 13

(蒋睿嵩, 张定华, 汪文虎, 卜 昆, 程云勇. 特种铸造及有色合金, 2009; 29(1): 13)

[11] Han W, Yu W S, Kong S G, Wu J T, Li J T, Ma Z L, Zhao M H. Foundry, 2009; 58: 1108

(韩伟, 于望生, 孙胜国, 吴剑涛, 李俊涛, 马章林, 赵明汉. 铸造, 2009; 58: 1108)

[12] Yu H L, Kang J W, Nie G, Long H M, Hao X K, Huang T Y. China Foundry, 2011; in press

[13] Coret M, Combescure A. Int J Mech Sci, 2002; 44: 1947

[14] Sun C Y, Fang G, Lei L P, Zeng P. Trans Mater Heat Treat, 2008; 29: 162

(孙朝阳, 方刚, 雷丽萍, 曾 攀. 材料热处理学报, 2008; 29: 162)
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[5] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[8] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[14] YANG Yong, HE Quanfeng. Lattice Distortion in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 385-392.
[15] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
No Suggested Reading articles found!