Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (9): 1086-1092    DOI: 10.3724/SP.J.1037.2010.00155
论文 Current Issue | Archive | Adv Search |
INFLUENCES OF MICROSTRUCTURE ON FATIGUE CRACK PROPAGATING PATH AND CRACK GROWTH RATES IN TC4ELI ALLOY
MA Yingjie1), LI Jinwei2), LEI Jiafeng1), TANG Zhenyun2), LIU Yuyin1), YANG Rui1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
Cite this article: 

MA Yingjie LI Jinwei LEI Jiafeng TANG Zhenyun LIU Yuyin YANG Rui. INFLUENCES OF MICROSTRUCTURE ON FATIGUE CRACK PROPAGATING PATH AND CRACK GROWTH RATES IN TC4ELI ALLOY. Acta Metall Sin, 2010, 46(9): 1086-1092.

Download:  PDF(792KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Long fatigue crack propagating path in TC4ELI alloy with lamellar microstructure was studied by SEM. Statistics of angles between cracking path and α lamella exhibits that fatigue crack is apt to parallel α lamella or cross α lamella vertically, which will induce the ladder shape of crack propagating path. The parallel and vertical propagating patterns were interpreted with the weak α/β interface and the orientation of hcp α-Ti unit cell. Analysis of crack propagating path helps to understand the effect of microstructure on fatigue crack growth (FCG) rates. FCG rates tests with different microstructures reveal that in near fatigue crack threshold (ΔKth) region the thickness of α lamella is the main influential factor on fatigue crack growth rate da/dN, and the da/dN seems impervious to β grain size. However, in Paris region the FCG rates are both influenced by grain size and lamellar thickness.

Key words:  titanium alloy      microstructure      crack propagating path      crack growth rate     
Received:  02 April 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00155     OR     https://www.ams.org.cn/EN/Y2010/V46/I9/1086

[1]Sinha V, Soboyejo W O. Mater Sci Eng A, 2001; 319-321: 607 [2]Sansoz F, Ghonem H. Mater Sci Eng A, 2003; 356: 81 [3]Lindigkeit J, Terlinde G, Gysler A, Lütjering G. Acta Metall, 1979; 27: 1717 [4]Carter R D, Lee E W, Starke E A, Beevers C. J Met Trans, 1984; 15A: 555 [5]Suresh S, Fatigue Met Trans A, 1985; 16: 249 [6]Suresh S. Translated by Wang Z G, Zang Q Sh, Li Sh X. Fatigue of Material. Beijing: Defense Industrial Press, 1999: 355 (Suresh S著, 王中光, 臧启山, 李守新译. 材料的疲劳, 北京: 国防工业出版社, 1999: 355) [7]Goswami T. Mater Design. 2003; 24: 423 [8]Ding J, Hall R, Byrne J. Int J Fatigue. 2005; 27: 1551 [9]Shademan S, Sinha V, Soboyejo A B O, Soboyejo W O. Mech of Mater, 2004; 36: 161 [10]Jata K V, Starke E A. J Met Trans A, 1986; 17A: 1011 [11]Suresh S, Zamiski G F, Ritchie R O. Met Trans A, 1981; 12A: 1435 [12]Vasudevan A K, Suresh S. Met Trans A, 1982; 13A: 2271 [13]Lütjering G. Mater Sci Eng A, 1998; 243: 32. [14]Lütjering G. Mater Sci Eng A, 1999; 263: 117 [15]Filip R, Kubiak K, Ziaja W, Sieniawski J. J Mater Processing Tech, 2003; 133: 84 [16]Li Sh K, Xiong B Q, Hui S X, Ye W J, Yu Y. Mater Sci Eng A, 2007; 460–461: 140 [17]Ma Y J, Liu J R, Lei J F, Liu Y Y, Yang R. Chinese J Mater Research, 2008; 22: 555 (马英杰, 刘建荣, 雷家峰, 刘羽寅, 杨锐. 材料研究学报, 2008; 22: 555) [18]Gil F J, Planell J A. Mater Sci Eng A, 2000; 283: 17 [19]Semiatin S L, Fagin P N, Glavicic M G, Ivasishin O M. Mater Sci Eng A, 2001; 299: 225 [20]Semiatin S L, Soper J C, Sukonnik I M. Scri Met Meterialia, 1994; 30: 951 [21]Борисова E A. Translated by Chen Sh Q. Metallography of Titanium Alloy. Beijing: Defense Industrial Press, 1986: 235 (鲍利索娃E A 著. 陈石卿译. 钛合金金相学. 北京:国防工业出版社,1986: 235). [22]Ma Y J, Liu J R, Lei J F, Liu Y Y, Yang R. Rare Met Mater Eng, 2009; 38: 976 (马英杰, 刘建荣, 雷家峰, 刘羽寅, 杨锐. 稀有金属材料与工程, 2009; 38: 976) [23]Ma Y J, Liu J R, Lei J F, Li Y R, Liu Y Y, Yang R. Acta Metall Sin, 2008; 44: 973 (马英杰, 刘建荣, 雷家峰, 李玉兰, 刘羽寅, 杨锐. 金属学报, 2008; 44: 973) [24]Ma Y J, Liu J R, Lei J F, Liu Y Y, Yang R. Rare Met Mater Eng, 2008; 37(suppl): 633 (马英杰, 刘建荣, 雷家峰, 刘羽寅,杨锐. 稀有金属材料与工程, 2008; 37(suppl): 633) [25]Xu F. PhD Thesis, Institute of Metal Research CAS, 2008 (徐峰, 博士学位论文, 中国科学院金属研究所, 2008) [26]Savage M F. Mater Sci Eng A, 2001; 319–321: 398 [27]Sansoz F, Ghonem H. Mater Sci Eng A, 2003; 356: 81 [28]Li Sh K, Xiong B Q, Hui S X, Ye W J, Yu Y. Mater Characterization, 2008; 59: 397 [29]Schroeder G, Albrecht J, Luetjering G. Mater Sci Eng A, 2001; 319–321: 602
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!